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 Connecting Data to Models 
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Presentation Notes
We welcome the opportunity to present to the DARPA team the latest developments and DISCUSS future plans at VBI.

http://www.nimml.org
http://www.modelingimmunity.org
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Mucosal Immune System 

Presenter
Presentation Notes
Let me give you some facts and figures; some food for thoughtThe gut associated immune system is the largest immune compartment (70% of the immune system).The mucosal immune system accounts for 300 square meters in humans10 to the 12 bacteria per cubic centimiter in humans (colon)1,000 bacterial species
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Presentation Notes
The research thrust of NIMML represents a Translational Medicine and HUMAN HEALTH thrustThe human intestine must peacefully coexist with about 100 trillion commensal organisms while swiftly responding to pathogens that threaten its integrity



MMI Goals 

• Introduce immunologists to the latest 
methods and tools for using computational 
modeling 

• Present MIEP and MIB work to a wider 
audience 

• Disseminate computational models of the gut 
mucosal immune system 

 



What you have learned? 
• Mucosal immune responses (CD4+ T cells and epithelial 

cells) 
– Inductive and effector sites 

• Types of computational models of the MIS and tools 
• How to build network models from data and theory 
• Mining immunological datasets using Cytobank or IPA, 

signaling-regulatory network modules 
• Using CellDesigner, COPASI  and ENISI for modeling 

– Calibration, sensitivity analysis, parameter estimation, 
simulation, model-driven hypothesis generation & 
experimental validation 

 

Presenter
Presentation Notes
Recap about progress over the last 4 days.



MIEP Modeling 
• Build models that are portable and comply with 

standards (i.e., SBML) 
• Models of the immune system are applicable to 

infectious and autoimmune diseases 
• Models can be recycled for new uses following re-

calibration with new datasets 
• Combine theoretical and data-driven approaches 

to make models predictive 
• Integrate diverse datasets and explore conflicting 

results 
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Common Themes 

Presenter
Presentation Notes
Can someone tell me a common theme between these two pictures?Both the Chicago Tribune in 1948 and Google in 2009-2014 failed to predict outcomes.FAILURE OF GOOGLE FLU TRENDS. LACK OF THEORETICAL FRAMEWORK. The vast majority of people that think they have the flu do not.BIG DATA IS NOT A SUBSTITUTE FOR BUT A COMPLEMENT TO TRADITIONAL DATA



Data-driven vs. theoretical 
WHAT IS BEST? 

 

TIME magazine: 
“A new study shows that using big 
data to predict the future isn't as easy 
as it looks—and that raises questions 
about how Internet companies gather 
and use information” 

Presenter
Presentation Notes
“Big data hubris” is the often implicit assumption that big data are a substitute for, rather than a supplement to, traditional data collection and analysis. quantity of data does not mean that one can ignore foundational issues of measurement and construct validity and reliability and dependencies among data



WHAT IS BEST? 
 

Complementary Strategies 
 

Data driven Theoretical 

Data-driven vs. theoretical 

Presenter
Presentation Notes
“Big data hubris” is the often implicit assumption that big data are a substitute for, rather than a supplement to, traditional data collection and analysis. quantity of data does not mean that one can ignore foundational issues of measurement and construct validity and reliability and dependencies among data



Computational Immunology 

The Network Model 

Modeling tools 
In silico experiments 

Hypothesis generation 

In vivo hypothesis testing 

Literature &  
data mining 

REFINEMENT 

ENteric Immunity 
SImulator 
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Presentation Notes
COPASI - COmplex PAthway SImulator. I will discuss 3 use cases combining theoretical and data-driven approaches (two more theoretical and 1 more data driven).



Helicobacter pylori 

• H. pylori was classified as a type I carcinogen by the WHO... 
Should it be eradicated? 

• H. pylori should be included in the list of most endangered 
species (M. Blaser)...and preserved as a beneficial commensal 

• Inverse correlation between H. pylori prevalence and rate of 
overweight/obesity (Lender, 2014) 

 
 
 

 



Host Responses to H. pylori 

Current medical treatment will clear up the bacteria,  
even during chronic infections 

Is this the right approach? 
INFLAMMATORY RESPONSE 
UNDERNEATH 



We have given evidence supporting the following: 
 
-   CD4+ T cells are key mediators during H. pylori infection 
 
-   Cytokines and transcription factors activated in CD4+ T cells are 
crucial to modulate myeloid cell function 
 
-   We need to target the immune system and not the bacterium itself 
if we want to reduce inflammatory processes during chronic infections 

HOST-TARGETED THERAPEUTIC  
APPROACHES 

Host Responses to H. pylori 



ENISI LP Simulation Results 

Presenter
Presentation Notes
The objective is to test whether two groups of functional curves are statistically differentFUNCTIONAL T-test using permutation technique



i.    IL-21 is mostly produced by activated CD4+ T cells 
(especially Th17) fTh and NKT cells 
 
ii.   IL-21 helps in the maintenance of Th17 and impairs Treg 
homoeostasis by IL-2 inhibition 
 
iii.   IL-21 is increased with H. pylori infection and correlates 
with levels of gastritis in the mouse model 

Interleukin-21 

CD4+ T cell differentiation 



CD4+ T cell differentiation 

IL-21 





Re-calibration of the CD4+ T cell model with experimental data coming from H. pylori infections 

Stomach RT-PCR data 

CD4+ T cell differentiation 



IL-21 activation is positively correlated with Th1- and Th17-related molecules and negatively 
correlated to both FOXP3 and IL-10 

Sensitivity Analysis 
 
How sensitive are different 
molecules to the change in 
concentration of IL-21 
following H. pylori 
infection? 

CD4+ T cell differentiation 



As predicted by the computational model, IL-21 regulates Th1 and Th17 expression via STAT1-P 
and STAT3-P, modulating T-bet and RORƔt expression 

In vivo validation 
 

CD4+ T cell differentiation 



IL-21 does not modulate FOXP3 expression during H. pylori infection. However, IL-21 has a 
significant impact on the IL-10 response by Th17 cells 

In silico experimentation 
 

CD4+ T cell differentiation 



As predicted, IL-10 expression was significantly higher in H. pylori-infected IL-21-/- mice and IL-21 
does not modulate FOXP3 expression in CD4+ T cells from infected mice 

In vivo validation 

CD4+ T cell differentiation 



CD4+ T cell differentiation 



Can we find a better, more targeted approach 
to reduce the inflammatory response triggered 

by H. pylori? 

YES 

CD4+ T cell differentiation 



IL-21-based Therapeutics 
IL-21 inhibitor: PF-05230900 
 
Trade Name: ATR-107 
 
Company: Pfizer 
 
Biological Target: IL-21 in IBD 
 
Mechanism: binds to IL-21 and blocks processes 
leading to inflammatory activity 



  

http://www.modelingimmunity.org/models/copasi-helicobacter-pylori-computational-model-archive/ 

Immune response to H. pylori 



 
Th1 and Th17 effector responses contribute to 
gastritis in the chronic phase of infection. 
 

Previous Model predictions 

Presenter
Presentation Notes
Results based on sensitivity analysis (SA) after model calibration



Simulation of PPAR γ deletion 



Epithelial vs Myeloid Cell 

Epithelial antimicrobial 
response 

M1 macrophage 
differentiation 

Presenter
Presentation Notes
WT mice have more HP in the lumen and LysM in LPTrafficking from phagosome to phagolysozome *vacA and arginase



H. pylori Loads and Lesions 
Uninfected Wild Type 

Myeloid cell 
PPARγ-deficient 
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Presentation Notes
H. pylori loads drop drastically after week 2 in LysMcre mice Lack of PPARγ in macrophages seems to help the clearance of bacteria Myeloid cells are critical regulators of colonization and gastric pathology during H. pylori infection



15min H. pylori co-culture 

Macrophage-Hp co-cultures 



HUMAN & ANIMAL 
STUDIES 

Publicly 
available data 

(GEO)  

In-house 
generated NGS 

data 

ANALYSIS with  
GALAXY pipeline 

Sequencing RESULTS 
(gene reads) 

Data TREATMENT 

Read Averages, Read Trimming, 
and Calculations of FCs and Log2 

Integration of data  
into Ingenuity 
Pathway Analysis 

Core analysis 
Identification of Canonical 

Pathways  
Differences in expression 

Network inference 

Extraction of data and 
construction of SBML-

compliant network 

GENERATION of NEW 
HYPOTHESES 

Importation into COPASI and ENISI  
for Model Calibration, Simulation,  

and Analysis 

Presenter
Presentation Notes
You have seen this slide before and it is a work in progress. In this case I want to remind you about the process in the context of H. pylori infection



360 min 

 

Response to H. pylori 



 

Innate Responses to H. pylori 



 

Modeling Innate Responses 
to H. pylori 



 

Modeling Innate Responses 
to H. pylori 



NLRX1 Sensitivity Analysis 
• Local sensitivity analysis portrays 

relationship between NLRX1 and 
viral signaling cascades during 
intracellular H. pylori infection 

 
• NLRX1 and IFN signaling 

demonstrate intimate link within 
our model; could translate 
biologically 

 
• Sensitivities suggest there may be a 

role for NLRX1 in MHC class I 
signaling as well 

Presenter
Presentation Notes
the role of NLRX1 in IFN & MHC signaling is novel and unreportedthe darker the red, the more impact a change in NLRX1 will exert on the corresponding molecule



NLRX1 Expression Validation 
in Macrophages 

                  Wild type                        PPARγ-deficient   



Validation in NLRX1 ko 



CD8+ T cell responses 

Control/ H. pylori J99/SS1 

0          7           14        21        28         35        42          49      56                          



Next Steps 
• Run local and global sensitivity analyses by using 

COPASI 
– Sensitivities across scales to link molecular changes with 

tissue-level lesion formation 
– Sensitivities of the model to changes in NLRP3, NLRC5, 

NOD1 
• Generation of in silico KOs 

– Calibration, sensitivity analysis, parameter estimation, 
simulation, model-driven hypothesis generation, 
stochastic simulations of sensitive nodes 

– Integrate this gene expression model with tissue level 
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Presentation Notes
Recap about progress over the last 4 days.
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Enteroaggregative E. coli 



a leading cause of enteritis & 
persistent diarrhea worldwide 

High risk populations:  
– Travelers  
– HIV infected 
– Malnourished children 

EAEC 

Diarrheagenic Isolate 
Frequency Distribution 

EAEC

EPEC

EHEC

ETEC

EIEC

41.1% 

41.1% 

AAF fimbria: 
primary virulence 

factor attributed to 
mucosal adherence  

Fli-C flagellin: 
responsible for  
IL-8 secretion 

 

Dispersin: 
Allows dissociation 
from biofilm and 

spread of colonization 



EAEC 

• Our in vivo murine model data suggested a 
beneficial role for Th17 cells and IL17A 

• We used computational modeling to predict 
the effects of enhancing effector T cell 
populations during EAEC infection 



Targeting PPARγ as an inflammatory mediator 

Treg Th17 

PPAR γ 

• Gene expression: Upregulation of proinflammatory markers in CD4Cre+ 
• Histopathology: High leukocytic infiltration early during infection in CD4Cre+ 

followed by amelioration of colonic inflammation by day 14 



EAEC T cell Model 

Parameter estimation  Calibration 

0            1            3            5         7           10          14 

Presenter
Presentation Notes
we used time course flow cytometry and gene expression (mRNA for cytokines) data to calibrate our modelused malnourished EAEC infected colonic LPL data



Pharmacological blockade 

GW9662  
a potent PPARγ 

antagonist 
Administration of GW9662 promoted the 

upregulation of proinflammatory cytokines that 
correlated to significantly lower levels of EAEC in 

feces early during infection 

Wild Type system
CD4+ T cells during EAEC infection
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Wild Type system
Cytokines during EAEC infection
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PPARγ deficient system
CD4+ T cells during EAEC infection
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PPARγ deficient simulation
Cytokines during EAEC infection
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PPAR g deficient system had enhanced effector responses



Antimicrobial Peptides 

naïv
e T 
cell 

RORγt 
Th17 

TGFβ IL-6 

IL-17 
IL-21 Pharmacological blockade  

of PPARγ beneficial 
Late during infection GW9662 treated mice expressed 

cytokines responsible for potentiating Th17 
differentiation in addition to significantly higher 

levels of anti-microbial peptides. 



IL-17A Neutralization abrogates 
benefits of PPARγ Blockade 

Anti-IL-17A neutralizing  antibody abrogates the beneficial effects of GW9662 in 
ameliorating disease based on weight loss and bacterial shedding 
 

Presenter
Presentation Notes
Bacterial loads are significantly elevated  in untreated and anti-IL17 + GW9662 groups early during infectionSignificant %body weight differences beginning on day 3 post infection coincide with an increased bacterial burden in untreated and anti-IL17 + GW9662-treated mice
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