

Multiscale models for understanding regulators of tissue growth and remodeling

Shayn Peirce-Cottler, Ph.D.

Associate Professor of Biomedical Engineering

6.13.14

The DEPARTMENT of BIOMEDICAL ENGINEERING School of Engineering and Applied Science • School of Medicine

GROWTH & REMODELING: SPANS LENGTH SCALES AND IS DYNAMIC

GROWTH & REMODELING: RESULTS FROM EMERGENT BEHAVIOR OF INDIVIDUAL CELLS

4

AGENT-BASED MODELING:

CELLS ARE AGENTS THAT INTERACT AND RESPOND TO RULES

Example Behaviors:

- 1. Growth Factor Secretion
- 2. Phenotype Switch
- 3. Chemotaxis
- 4. Mitosis
- 5. Apoptosis/Necrosis

AGENT-BASED MODELS: OFFER A FLEXIBLE PLATFORM FOR MULTISCALE MODELING

J. Walpole, J.A. Papin, S.M. Peirce (2013) Annual Reviews of Biomedical Engineering

ANGIOGENESIS: TIP/STALK CELLS RESPOND TO VEGF AND EACH OTHER

SPROUT INITIATION: A BALANCE BETWEEN STIMULATORY AND INHIBITORY CUES

8

SPROUT INITIATION: A BALANCE BETWEEN STIMULATORY AND INHIBITORY CUES

SPROUT INITIATION: A BALANCE BETWEEN STIMULATORY AND INHIBITORY CUES

INITIAL CONDITIONS FOR ABM ARE BASED ON ACTUAL NETWORK

11

GROWTH FACTOR DIFFUSION AND LIGAND-RECEPTOR BINDING ARE PREDICTED BY ODE/PDE DIFFUSION AND KINETICS MODEL

RULES AND PARAMETERS ARE LITERATURE DERIVED AND CROSS-VERIFIED

Rate of VEGFR2 production depends on NOTCH: scaling coefficient fit to PDE $qVEGFR2 = qVEGFR2_{min} + (qVEGFR2_{max} - qVEGFR2_{min})e^{-k*Active_NOTCH}$ amount of activated literature derived NOTCH in same cell Activated NOTCH is a function of DLL4: $\frac{dActive_NOTCH}{dActive_NOTCH} = k_{Active_NOTCH} * Inactive_NOTCH * \sum_{active_NOTCH} Active_NOTCH$ dt rate constant for degradation DLL4-to-NOTCH rate of active NOTCH activation conversion NOTCH

Protein transport is governed by a coupled system of PDEs:

MULTISCALE MODEL: ABM MODEL OF CELL BEHAVIOR COUPLED TO PDE/ODE MODEL OF PROTEIN DIFFUSION/RECEPTOR BINDING

MULTISCALE MODEL PREDICTIONS: SPROUT FREQUENCY AND LOCATION (TRUE/FALSE POSITIVES)

Embryoid Body

Multiscale Model

Sprout Frequency and Location

True Positive – Model prediction within 1 cell length of actual sprout

False Positive – Model prediction outside range of actual sprout

MODEL IS PARAMETERIZED USING TRAINING DATA FOR SPROUT FREQUENCY AND VALIDATED AGAINST INDEPENDENT TEST DATA

BIVARIATE SENSITIVITY ANALYSIS SUGGESTS SENSIVITY TO INHIBITION SUPERSEDES SENSITIVITY TO STIMULATION

MULTIPARAMETRIC DATA POSES A CHALLENGE FOR DATA VISUALIZATION

MULTIVARIATE SENSITIVITY ANALYSES POSE A CHALLENGE FOR DATA VISUALIZATION: HELP FROM PARALLEL COORDINATES

MULTIVARIATE SENSITIVITY ANALYSES POSE A CHALLENGE FOR DATA VISUALIZATION: HELP FROM PARALLEL COORDINATES

SIMULATING REDUCED INHIBITION RECAPITULATES DAPT (GAMMA-SECRETASE INHIBITOR) EXPERIMENTS

ABM PREDICTS VEGF-R ACTIVATION (HARD TO MEASURE), AS WELL AS SPROUT LOCATION

VEGF-R2 Activation

VEGF Gradient Threshold

DOES SPROUT DENSITY AFFECT THE MODEL'S ABILITY TO CORRECTLY PREDICT SPROUT LOCATIONS?

PROBABILITY OF RANDOMLY SELECTING CORRECT SPROUT LOCATIONS IS PROPORTIONAL TO SPROUT DENSITY

AGENT-BASED MODELS: OFFER A FLEXIBLE PLATFORM FOR MULTISCALE MODELING

J. Walpole, J.A. Papin, S.M. Peirce (2013) Annual Reviews of Biomedical Engineering

HYPERTENSION: VASCULAR WALL GROWTH AND REMODELING

MULTISCALE MODEL OF VASCULAR WALL HYPERTROPHY DURING HYPERTENSION

PREDICTED VESSEL REMODELING FOLLOWING **30%** SYSTOLIC BLOOD PRESSURE INCREASE FOR **500** DAYS

CMM AND **ABM P**REDICTIONS

ENSURE CONGRUENCY BETWEEN TWO MODELS FOR COLLAGEN AND SMC MASS BY USING GENETIC ALGORITHM TO MINIMIZE OBJECTIVE FUNCTION: $e = \frac{2}{N} \sum_{n=1}^{N} \left(\frac{[C_{NT}^{ABM} - C_{NT}^{CMM}]}{[C_{NT}^{ABM} + C_{NT}^{CMM}]} + \frac{[M_{NT}^{ABM} - M_{NT}^{CMM}]}{[C_{NT}^{ABM} + C_{NT}^{CMM}]} \right)$

$N \sum_{j} C_{\rm NT}^{\rm chim} + C_{\rm NT}^{\rm chim}$	$M_{\rm NT}^{\rm ADM} + M_{\rm NT}^{\rm CMM} \int_{j}$
$+ 2 \sum_{r}^{S} \left(\frac{ C_{HT}^{ABM} - C_{HT}^{CMM} }{ C_{HT}^{ABM} - C_{HT}^{CMM} } \right)$	$ M_{\rm HT}^{\rm ABM} - M_{\rm HT}^{\rm CMM} $
$T \overline{S} \sum_{j} \sqrt{C_{\rm HT}^{\rm ABM} + C_{\rm HT}^{\rm CMM}}$	$M_{\rm HT}^{\rm ABM} + M_{\rm HT}^{\rm CMM}$

TABLE 2.	Listed are both	the initial val	ues of the par	rameters and	the bounds	that defined t	he search space
used in the	genetic algorith	nm to improve	congruency	between AB	M and CMM	predictions of	smooth muscle
		a	nd collagen m	nass via Eq.	(5).		

	Parameter	Initial value	Lower bound	Upper bound	After genetic algorithm
	K	1	0.1	10	1.11
СММ	Km	10	0.1	10	3.85
	K,°	1	0.1	10	2.85
	Km	10	0.1	10	8.75
	MMP-10	2.69E-04	2.69E-05	2.69E-03	9.47E-04
	MMP-1%A	0.39	0.039	3.93	1.04
	Co	0.009	0.0009	0.09	0.07
	CTGF	114.94	11.49	1149.42	134.57
	Mp	-1.45E+09	-1.45E+10	-9.69E+08	-1.53E+09
	Mo	80,000	53333.33	120,000	6.12E+04
	Mai	71020	7102	106530	9.89E+04
	M _{a2}	100	66.66	1000	223.21
	PDGF ₄	4.79E-07	3.19E-07	7.19E-07	7.03E-07
	PDGF ₀	4.17E-05	4.17E-06	6.25E-05	6.17E-05
	$TGF \beta_{\sigma_0}$	1.65E-06	1.65E-07	1.65E+05	7.87E-06
	L TGF _{β0}	1.03E-04	1.03E-05	1.03E-03	3.69E-04

H. Hayenga, B.C. Thorne, S.M. Peirce, J.D. Humphrey (2011)

CMM AND ABM PREDICTIONS AFTER CONGRUENCY ENFORCEMENT

H. Hayenga, B.C. Thorne, S.M. Peirce, J.D. Humphrey (2011)

CMM AND ABM PREDICTIONS AFTER CONGRUENCY ENFORCEMENT (WITH 15% PRESSURE INCREASE)

H. Hayenga, B.C. Thorne, S.M. Peirce, J.D. Humphrey (2011)

CONGRUENCY ENFORCEMENT BROUGHT MODEL PREDICTIONS CLOSER TO EXPERIMENTAL OUTCOMES

Experiment	Return to normal hoop stress	Citation
Systolic pressure increase of 24% in rats	140 days	Wolinsky (1972)
Systolic pressure increase of 30% in rats	126 day	Matsumoto & Hayashi (1994)

Model	Return to normal hoop stress		â	АВМ
CMM Prediction	70 days		LON) 1.2	смм
ABM Prediction	350 day		Stress 21.1	
With congruency (both ABM and CMM)	125	+	8 1 H _{0.9}	200 400

AGENT-BASED MODELS: OFFER A FLEXIBLE PLATFORM FOR MULTISCALE MODELING

J. Walpole, J.A. Papin, S.M. Peirce (2013) Annual Reviews of Biomedical Engineering

COMPUTATIONAL MODELS ARE SANDBOXES FOR EXPLORATION

MULTISCALE MODELS ARE ENTIRE PLAYGROUNDS (AS LONG AS WE KNOW OUR LIMITS AND SYNERGIZE)

MULTISCALE MODELS ARE USEFUL TOOLS FOR BASIC RESEARCH AND DRUG DISCOVERY

- Multiscale ABM-ODE/PDE computational model predicts dynamic capillary sprouting events (Necessary & sufficient mechanisms)
- Model is tunable to both VEGF stimulation and DLL/NOTCH inhibition (*Drug dosing and potency*)
- Sensitivity to DLL/NOTCH inhibition supersedes VEGF gradient threshold (Combination therapies)
- Specify conditions under which predictions fail *(Compensatory pathways)*
- Add layers of complexity (Drug target identification)

ACKNOWLEDGEMENTS

Peirce-Cottler Lab

Joseph Walpole Anthony Bruce Kyle Martin Scott Seaman **Molly Kelly-Goss Bruce Corliss Catherine Henry** Yiqi Cao

UNC-CH Vicki Bautch, Ph.D. John Chappell, Ph.D.

Johns Hopkins Feilim Mac Gabhann, Ph.D.

Yale University Jay Humphrey, Ph.D. Heather Hayenga, Ph.D. (UT Dallas)

THE HARTWELL FOUNDATION