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Abstract— A novel bioinformatics and data analytics pipeline 

that utilizes global gene expression datasets in combination with 

advanced computational modeling of metabolic pathways has 

been applied to predicting the metabolic profiles during viral 

infections. The Modeling Metabolism (M2) pipeline was used to 

analyze and compare complex metabolic profiles of four viral 

respiratory infections (rhinovirus infection, flu, COVID-19, and 

MERS-CoV infection) based on host RNA-seq datasets. During 

infection, multiple factors can affect the metabolic state of the host. 

Metabolic changes are biomarkers of host antiviral responses and 

viral pathogenesis. Therefore, analyzing the metabolic response to 

infectious diseases might provide valuable mechanistic insights 

into host-pathogen interactions and highlight metabolic changes 

that play important roles in disease pathogenesis. By using the M2 

pipeline, we predicted that influenza virus, SARS-CoV-2, and 

MERS-CoV infections resulted in increased glycolytic activities 

and a reduced capacity for oxidative phosphorylation. 

Furthermore, SARS-CoV-2 and MERS-CoV infections both 

presented dysregulated pentose phosphate pathways (PPP), while 

influenza infection elicited an increase in PPP activity in 

correlation with disease severity and mortality. Notably, 

rhinovirus infection, the mildest respiratory infection studied, had 

little effect on the overall perturbation of host cellular metabolism. 

The M2 pipeline provides a rapid, comprehensive, and systems-

wide analysis of metabolic profiles from host response RNA-seq 

datasets during emerging and re-emerging infections.  

Keywords—Bioinformatics, Computational Biology, Metabolism, 

Infectious Disease, Immunology, RNA-seq 

I. INTRODUCTION

Basal metabolic rates found in homeostasis can experience 
significant shifts during disease. The upregulation or 
downregulation of metabolic pathways leads to measurable 
changes in intermediate metabolites and end products which 
have a drastic impact on cellular phenotype and function. These 
metabolic changes are the result of cells responding to 
environmental cues and adapting to modifications of energetic 
demands to increase the synthesis of biomolecules. For instance, 
in homeostasis, when energy demand within the cell is low, 
pyruvate is transported into the mitochondria to fuel oxidative 
phosphorylation, producing ATP efficiently. Increases in 
energetic demands during disease lead to glucose being 
metabolized to lactate to facilitate higher rates of ATP 
production via glycolytic flux. Here, we present a computational 
model of metabolism that is comprised of massively and 

dynamically interacting metabolic pathways associated with 
infection and immunity[1].  

Viral infections result in significant alterations of cellular 
metabolism to meet the increased energetic demands for the de 
novo synthesis of biomolecules during viral replication to 
produce new viral progeny[2]. More severe respiratory 
infections can cause respiratory distress, leading to hypoxia and 
increased production of reactive oxygen species[3]. To maintain 
cellular energy production during periods of low oxygen supply, 
HIF1-a causes an upregulation of glycolytic activity, increasing 
the concentration of lactate[4]. Often, increased tissue 
concentrations of lactate are associated with inflammation and 
greater oxidative stress[5]. The pentose phosphate pathway 
(PPP) is critical for the synthesis of precursors for nucleotides 
and amino acids, as well as to produce NADPH, a key 
neutralizer of reactive oxygen species (ROS). During viral 
infections, increased PPP activity can be an indicator of disease 
severity, as the PPP can be hijacked to increase the production 
of nucleotides and amino acids for virus replication[2]. Fatty 
acid oxidation involves short chain (< 16) fatty acids entering 
the mitochondria to be broken down to produce acetyl-coA, 
driving the TCA cycle and oxidative phosphorylation. Infection 
with SARS-CoV-2 and Influenza viruses decrease the ability of 
fatty acids to enter the mitochondria via CPT1 and CPT2-
mediated transport, respectively. Decreased access to energy 
obtained from fatty acids, makes cells rely more heavily on 
glycolysis, further favoring viral replication[4, 6]. 
Glutaminolysis and the malate aspartate shuttle regulate the 
concentration of metabolites within the mitochondria and are 
necessary for producing precursors for gluconeogenesis. 
Glutaminolysis utilizes glutamine to resupply the TCA cycle via 
the production of a-KG and is required for influenza infection[7]. 
During SARS-CoV-2 infection, increased citrate export from 
the mitochondria to fuel fatty acid synthesis demands increased 
TCA cycle metabolite replenishment via glutaminolysis[8]. The 
malate-aspartate shuttle is involved in the transfer of metabolites 
from the TCA cycle into gluconeogenesis, as well as the transfer 
of energy to the mitochondria by shuttling energy stored in 
cytosolic NADH to its mitochondrial counterpart, also an 
important regulating pathway for the balance of TCA cycle 
metabolites.  The analysis of these pathways as a massively and 
dynamically interacting network is important to understanding 
alterations of mitochondrial metabolism and how these changes 
can lead to mitochondrial dysfunction during viral infections[9, 
10]. 
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Given the importance of metabolic changes in viral 
infections, we have developed a computational model that 
enables a quick, system-wide analysis of metabolic responses by 
using RNA-seq data. We have applied our novel Modeling 
Metabolism (M2) bioinformatic pipeline to perform a 
comprehensive comparative evaluation of metabolic shifts 
during infection with various viral strains, including rhinovirus, 
Influenza A virus, SARS-CoV-2, and MERS-CoV from RNA-
seq host response data. The concentration and fluxes of 
metabolites are key values for understanding preferred 
metabolic pathways and the overall metabolic status of an 
infected host. These values are difficult to obtain via 
experimental methods and measuring all metabolites cannot be 
done at the same time[11]. Computational modeling uses well-
established rate laws to model chemical reactions[12, 13]. 
Concentrations of biochemical species can be estimated given a 
system of reactions and experimentally derived reaction 
parameters. Several previous models have successfully 
estimated the kinetics associated with pathways in metabolism 
[14, 15]. The complexity and interplay between metabolic 
pathways, requires an approach that considers the dynamics of 
the system, as opposed to a static analysis, to provide a global, 
system-wide metabolic profile during infection. We identified 
several gene expression datasets for infectious respiratory 
diseases, and ran them through our high throughput, advanced 
bioinformatic and computational modeling M2 pipeline. As a 
result, we obtained large amounts of output data in the form of 
predicted concentrations of enzymes and metabolites in the 
analyzed biosamples, that were subsequently filtered to generate 
novel hypotheses about the host immunometabolic responses, 
including potential metabolic hijacking, for each infection. Here, 
we show multiple model outputs to demonstrate how this M2 
pipeline can be used to shed new light on how host metabolism 
is affected by infectious respiratory disease. 

Infectious disease epidemics or pandemics caused by newly 
emerging viruses are open-ended threats to public health 
systems, most recently emphasized by COVID-19. Only in the 
past 20 years, the WHO declared epidemic transmission of 
newly identified strains of coronavirus SARS-CoV, MERS-
CoV, SARS-CoV-2, swine-origin Influenza H1N1, Ebola and 
Zika virus [16]. Despite strategic planning by international 
organizations and states, with their unpredictable presentation, 
these viruses have caused significant disruption. In addition to 
emerging and re-emerging viruses on the surveillance radar, it is 
estimated that there are half million unidentified mammalian 
viruses in wildlife reservoirs that could potentially jump the 
species barrier into humans [17]. The chances of these rare 
events are increasing due to over-stretching of ecological niches 
by human activity. A robust bioinformatics and data analytics 
pipeline such as the M2 allow for a rapid, system-wide and 
comprehensive analysis of new epidemiological threats, 
increases the amount of biological information that can be 
extracted from time course RNA-seq experiments, and provides 
a platform for performing additional in silico experiments for 
obtaining preliminary data or hypothesis building. 

II. METHODS

A. Data Accession and Processing

The M2 pipeline was developed as a tool for predicting the
host metabolic responses to various stimuli. We gathered, 

developed, and layered multiple methodologies together to 
create a pipeline that transformed gene expression data into a 
simulation of metabolic reactions. Gene expression data for four 
respiratory infectious diseases were obtained from archives 
found on GEO database [18]. The viruses included in the 
analysis are Rhinovirus, Influenza virus, SARS-CoV-2, and 
MERS-CoV. Information pertaining to the strains and 
experimental design can be found on Table I. A transcripts per 
million (TPM) transformation was performed to normalize the 
data, accounting for gene length and provided a basis to compare 
samples from the same study. The TPM values were then plotted 
and modified such that the area under the curve of TPM values 
was equal to the total concentration of proteins within a cell. 
This transformation allowed for protein concentrations to be 
assumed for each gene of interest. Using a study outline that 
listed multiple isoforms associated with each metabolic gene of 
interest, each study with time-course data had the enzymes of 
interest plotted against polynomial equations of orders 0 through 
5 using the optimize package within Scipy for Python. The 
processing of the RNA-seq data to polynomial equations 
involved matching the appropriate naming conventions for each 
data for the selection of each enzyme (e.g., RefSeq or Ensembl). 
Analyst intervention was necessary at this portion of the pipeline 
to weigh the R2 values of the fits against potential overfitting of 
the data. Isoforms were ranked by their total expression by the 
pipeline and if no intervention based on tissue sample or specific 
function is performed by the analyst, the highest concentration 
was selected to be input to the model. After the polynomial 
equations were chosen for each enzyme, they were implemented 
into the base model of metabolism using python scripts that 
replaced constant values with polynomial assignments of 
concentration based on the internal time of the simulation. This 
process created a standalone SBML compliant model that was 
used to run a time-course simulation of metabolism.  

TABLE I. VIRUS STUDIES INFORMATION 

B. The Metabolic Model

The base model of metabolism was a system of differential
equations with 131 species and 57 reactions (Figure 1)[1]. Many 
highly conserved mammalian metabolic pathways were 
incorporated into the model using a systems biology approach. 
Glycolysis, gluconeogenesis, the pentose phosphate pathway, 
the TCA cycle, fatty acid oxidation, oxidative phosphorylation, 
the malate-aspartate shuttle, and glutaminolysis were all 
included in the network of the model. Glucose, fatty acid, and 
glutamine concentrations were considered the model inputs in 
addition to the enzyme concentration equations, which were 
estimated from experimental values obtained from the RNA-seq 
data. The concentration of each metabolite and fluxes of each 
reaction were considered the model outputs. To estimate the rate 

Virus Strain
Time Points (days 

post-infection)
Tissue Model Organism GSE #

Rhinovirus RV-A1 0, 1, 2, 3, 4

Bronchial 

epithelial 

cells

Homo sapiens GSE146532

Influenza (H5N1) A/Vietnam/1203/2004 0, 1, 2, 4, 7 Lungs Macaca mulatta GSE33351

Influenza (H1N1) A/Texas/36/91 0, 1, 2, 4, 7 Lungs Macaca mulatta GSE33351

Influenza (1918 

HANA)

A/Texas/36/91 + (HA, 

NA)
0, 1, 2, 4, 7 Lungs Macaca mulatta GSE33351

Influenza (1918 

HANANS)

A/Texas/36/91 + (HA, 

NA, NS)
0, 1, 2, 4, 7 Lungs Macaca mulatta GSE33351

SARS-CoV-2 USA-WA1/2020) 0, 1, 2, 4, 6, 8, 14 Lungs Mesocricetus auratus GSE161200

MERS-CoV HCoV-EMC/2012 0, 3, 4, 6 Lungs Callithric jacchus GSE55023
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of a reaction, we considered the dissociation constant of the 
enzyme and substrate, the maximum enzymatic activity, and the 
substrate and enzyme concentrations. The dissociation constant 
(kd) and maximum enzymatic activity (kcat) was derived from 
experimental data that had been obtained over the course of 
decades of experimental biological research, and compiled into 
the SABIO-h, Biochemical Reaction Kinetics Database[19]. 
The reaction enzyme commission (EC) number was used to 
identify the appropriate rate laws on the SABIO-h database. 
External substrate concentrations were estimated using 
experimentally derived values[20, 21] and enzyme 
concentrations were derived from gene expression data, which 
required an experimentally derived dataset (RNA-seq) and the 
transformation described in the previous section. Reactions 
within the model used rate law equations to determine the flux 
of each reaction. The rate laws used were Michaelis Menten[12], 
ping-pong bi-bi, or Hill-like equations[13]. Time-course 
simulations were run using PyCoTools package for python. The 
duration of the simulation corresponded to the length of each of 
the time-course RNA-seq studies and resolution time associated 
with each disease (Rhinovirus: 96 hours, Influenza: 160 hours, 
Covid-19: 320 hours, MERS: 140 hours). Each species within 
the model was plotted separately and compared to the uninfected 
control simulation and other strains if applicable, which allowed 
for direct comparisons between infected simulations and the 
uninfected control. 

Fig. 1. Network diagram of metabolic pathways included in the computational 

model of metabolism. The metabolic pathways represented in the model are 

glycolysis (1), pentose phosphate pathway (2), citric acid cycle and oxidative 

phosphorylation (3), fatty acid oxidation (4), malate-aspartate shuttle (5) and 

glutaminolysis (6). Species for which simulation results are reported are marked 

with asterisks. 

III. RESULTS

A. SARS-CoV-2 and MERS-CoV Infection Result in Highly

Elevated Lactate Production in Host Cells

To analyze how glycolysis was altered by the four viral
infections, we highlight the glycolytic pathway within our model 
and focus on three key portions, F1,6-BP, MPC, and 
extracellular lactate. The concentration of F1,6-BP shows how 
metabolites are progressing past the major glycolytic regulator, 
PFK. MPC is the enzyme responsible for transporting pyruvate 
into the mitochondria, allowing for higher activity of the TCA 
cycle and fewer pyruvate molecules being reduced to form 
lactate. Extracellular lactate shows how much complete 
glycolysis has occurred.  

Fig. 2. Analysis of glycolysis during infectious respiratory diseases. Time-

course plots comparing the simulated concentrations of F1,6-BP, MPC, and 

Lactate (Extracellular) during infection by (a) Rhinovirus (b)  Influenza virus 

strains (c) SARS-CoV-2, and (d) MERS-CoV. For each virus type analyzed, an 

uninfected control was included for reference of baseline metabolic level. 

The rhinovirus infection simulation shows a slight increase 
in glycolytic flux, indicated by increased lactate production 
(Figure 2a). The Influenza virus infection simulations showed 
little change between lactate production of the control host and 
the host infected by the A/Texas/36/91 strain, while infections 
by  the A/Vietnam/1203/2004, A/Texas/36/91 + (HA, NA), and 
A/Texas/36/91 + (HA, NA, NS) strains all showed more 
elevated lactate production (Figure 2b). 

SARS-CoV-2 infection experienced a burst-like increase in 
F1,6-BP concentration at 45 hours post-infection, followed by a 
lower, less abrupt increase at 200 hours or approximately 8 days 
post infection (DPI). Simulated concentration of MPC was 
lower in SARS-CoV-2 infected lungs but recovered to control 
levels by the end of the simulation. This response is consistent 
with an initial response to disease, followed by a recovery phase. 

F1,6-BP MPC Lactate
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The decrease in transport capacity for pyruvate into the 
mitochondria was significant enough that it likely contributed to 
the increased lactate production. Concentration of extracellular 
lactate has two major time frames in which it increased 
drastically, centered around 45 hours and 200 hours (2 and 8 
DPI). These increases corresponded to the upstream bursts of 
glycolytic metabolite production shown by F1,6-BP (Figure 2c). 
MERS-CoV also experienced a burst-like increase in F1,6-BP 
concentration at approximately 65 hours (2 DPI). MPC 
concentration for both the infected and control were not 
available in the dataset, so a default value of 1mM was selected. 
Extracellular lactate concentration increased drastically at 0 
hours and 65 hours (2 DPI) following MERS-CoV infection, 
with little change outside of these timepoints (Figure 2d).  

Overall, our simulation results suggest a direct correlation 
between glycolytic activity and disease severity, with SARS-
CoV-2 and MERS-CoV showing the largest differences 
between infected and control, particularly a sharp increase in the 
amount of extracellular lactate being produced due to upstream 
glycolytic activity. 

B. Pentose Phosphate Pathway Activity Is Associated with

Increased Severity of Infection

For the analysis of the PPP, we focused on NADPH
produced from G6PD, G1,5L6P, and SHL7P. NADPH produced 
from G6PD was selected for analysis because it is an important 
neutralizer of reactive oxygen species and a representative value 
for how many metabolites are entering the PPP. G1,5L6P and 
SHL7P, are the first and one of the last metabolites of the 
pathway, respectively, and were selected to assess metabolite 
flow through the PPP.  

Fig. 3. Analysis of pentose phosphate pathway during infectious respiratory 

diseases. Time-course plots comparing the simulated concentrations of 

NADPH produced by G6PD, G1,5L6P, and SHL7P during infection by (a) 

Rhinovirus (b) Influenza virus strains (c) SARS-CoV-2, and (d) MERS-CoV. 

For each virus type analyzed, an uninfected control was included for reference 

of baseline metabolic level. 

Rhinovirus infection did not alter the PPP based on the 3 
metabolites analyzed in infected versus uninfected control 
groups (Figure 3a). During influenza virus infections, the 
production of NADPH was increased the most in H5N1. Both 
1918 HANA and 1918 HANANS strains followed the same 
approximate pattern, with moderate elevation of NADPH. The 
H1N1 strain showed little difference in production of NADPH 
over the uninfected control. The concentration of G1,5L6P was 
highest in infection by the H5N1 strain, followed by infection 
by 1918 HANA and 1918 HANANS, with the H1N1 infection 
concentration being slightly below the uninfected control. 
SHL7P production was highest in the H5N1 strain, with all other 
strains being only slightly elevated above the control simulation 
(Figure 3b). During SARS-CoV-2 infection, the production of 
NADPH via G6PD was slightly decreased from approximately 
100 hours to 150 hours (4 and 6 DPI). The concentration of 
G1,5L6P experienced a burst-like spike in concentration near 
the end of the simulation. The concentration of SH7LP during 
SARS-CoV-2 infection increased drastically at 150 hours (6 DPI) 
(Figure 3c). In MERS-CoV infection, the production of NADPH 
started off slower than the control, but it increased on the second 
half of the simulation period. G1,5L6P concentration remained 
similar in infected and in the control until approximately 55 
hours (2 DPI), when it was quickly depleted, remaining low for 
the remainder of the simulation. SH7LP concentration was 
lower in the infected simulation until hour 75 (3 DPI) when it 
began to increase at a high constant rate (Figure 3d). 

Simulations of the PPP showed mostly a strain severity-
dependent response within the influenza infections, with more 
severe infections (i.e., H5N1) having a greater increase in the 
concentrations of metabolites of the PPP. SARS-CoV-2 
infection showed decreased NADPH production, and MERS-
CoV infection had a drastic increase in NADPH production at 
60 hours post infection (2 DPI). Overall, PPP dysregulation 
increased with disease severity, and may be an indicator of 
disease severity in emergent disease. 

C. Fatty Acid Oxidation Increased in Influenza Depending on

Strain Lethality and Decreased in SARS-CoV-2

Fatty acid oxidation leads to the production of acetyl-coA
and is an important driver of the TCA cycle. We focused on two 
main metabolites within fatty acid oxidation: fatty acids in the 
cytosol, and acetoacetyl-coA. Like the PPP, we highlighted 
metabolites at the start (Fatty Acid) and finish (Acetoacetyl-
CoA) of fatty acid oxidation to obtain a snapshot of how the 
pathway was functioning. Acetoacetyl-CoA showed how many 
metabolites were directly available to be converted into acetyl-
coA to continue fueling mitochondrial metabolism. 

During rhinovirus infection, fatty acid concentration within 
the cytosol spiked slightly at the beginning of the simulation but 
quickly returned to background levels like the uninfected control. 
The concentration of acetoacetyl-coA mostly mirrored this 
behavior, with a spike in the early portion of the simulation, and 
evening out with the uninfected control by 75 hours (3 DPI) 
(Figure 4a). Infection with influenza virus mostly led to 
decreased concentration of fatty acids in the cytosol, except for 
the H5N1 strain, which showed a biphasic response with a 
suppression of fatty acids followed by increased concentration 
above uninfected and the rest of strains analyzed. The 1918 

NADPH (G6PD) G1,5-L-P SHL7P
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HANANS strain of Influenza also caused a biphasic response, 
with increased in fatty acid concentration though of lesser 
magnitude than the response to H5N1 infection. This effect 
seems to correlate negatively with the amount of acetoacetyl-
coA produced, where the concentration of acetoacetyl-coA was 
increased during  infection by most strains except for H5N1 and 
1918 HANANS (Figure 4b). During SARS-CoV-2 infection, the 
concentration of fatty acids in the cytosol had a sharp increase 
initially, returning to control levels by 200 hours (8 DPI). The 
acetoacetyl-coA concentration was initially low, but after 
approximately 150 hours (6 DPI), increased to a higher 
concentration than the control (Figure 4c). In MERS-CoV, fatty 
acid concentration in the cytosol was increased much higher 
than that of the uninfected control, and the concentration of 
acetoacetyl-coA experienced a burst of concentration between 
90 hours and 130 hours (3 and 5 DPI) (Figure 4d). 

Fig. 4. Analysis of fatty acid oxidation during infectious respiratory diseases. 

Time-course plots comparing the simulated concentrations of acetoacetyl-coA 

and fatty acid in the cytosol during infection by (a) Rhinovirus (b) Influenza 

virus strains (c) SARS-CoV-2, and (d) MERS-CoV. For each virus type 

analyzed, an uninfected control was included for reference of baseline 

metabolic level. 

Our simulation results point to differential responses 
depending on the virus type with minimum impact during 
rhinovirus infection, and infection with less pathogenic strains 
of influenza virus. In contrast, results from influenza virus H5N1 
and 1918 HANANS suggest that higher fatty acid oxidation 
could be associated with increased morbidity and mortality. 
With regards to the coronavirus strains, both SARS-CoV2 and 
MERS-CoV show changes in FA metabolism with the former 
resulting in a sharp increase of FA and Acetoacetyl-CoA 
concentrations towards the end of the simulations.  

D. SARS-CoV-2 and MERS-CoV Infections are Characterized

by a Decrease in Host Mitochondrial  Activity Early Post-

Infection, Followed by Increased Activity During Recovery

Oxidative phosphorylation in the mitochondria is an
important source of energy that is fueled by the TCA cycle, in 
which metabolites from glycolysis, fatty acid oxidation, and 
glutaminolysis converge. When infections or other stimuli 
disrupt the flow of metabolites into the mitochondria or suppress 
the expression of mitochondrial enzymes, this source of energy 
can be impeded, which can lead to cell apoptosis. Our analyses 
highlighted acetyl-coA concentration, ATP produced from 
oxidative phosphorylation, and succinyl-coA as indicators of 
TCA and oxidative phosphorylation activities. Acetyl-CoA is 
crucial for the continued function of the TCA cycle and is 
produced by both glycolysis and fatty acid oxidation. ATP 
production from oxidative phosphorylation is an important 
indicator of mitochondrial function, as it is affected by the 
activity of the entire TCA cycle and the complex concentrations 
within the electron transport chain.  

Fig. 5. Analysis of citrate cycle during infectious respiratory diseases. Time-
course plots comparing the simulated concentrations of acetyl-coA, ATP 
produced from oxidative phosphorylation, and succinyl-coA during infection by 
(a) Rhinovirus (b) Influenza virus strains (c) SARS-CoV-2, and (d) MERS-CoV. 
For each virus type analyzed, an uninfected control was included for reference 
of baseline metabolic level.

Rhinovirus infection simulation shows little change from the 
uninfected control concentrations of acetyl-coA, ATP produced 
from oxidative phosphorylation, and succinyl-coA (Figure 5a). 
Influenza virus infection appears to have modest impact on the 
parameters included in the analysis. With regards to Acetyl-CoA, 
there was an increase over the control. ATP produced from 
oxidative phosphorylation was suppressed in infections by both 
1918 HANA and 1918 HANANS strains and slightly increased 
in the H5N1 infection over the control. Succinyl-coA 
concentration was unchanged in all strains analyzed, except for 

Acetoacetyl-CoA Fatty Acid

Acetyl-CoA ATP (OXPHOS) Succinyl-CoA
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a slight suppression towards the end of the simulation seen for 
the H5N1. (Figure 5b). The most remarkable effects of SARS-
CoV-2 infection were a decrease in Acetyl-CoA and an initial 
decrease followed by an increase in concentration over the 
control in succinyl-CoA. MERS-CoV showed a significant 
increase in Acetyl-CoA and a spike of succinyl-CoA 
overlapping in time. ATP was suppressed in comparison to the 
control by MERS-CoV with no detectable effects in SARS-
CoV-2 (Figure 5c).  

Mitochondrial metabolism in influenza virus infections 
shows slightly increased concentrations of acetyl-coA. Initially, 
all strains of Influenza have decreased production of ATP from 
oxidative phosphorylation, but through the infection, H5N1 
recovers to a higher level than the control, whereas the other 
strains are not able to recover to the control amount. 

E. Glutaminolysis Activity Increased in H5N1, SARS-CoV-2,

and MERS-CoV Infections

We highlighted glutaminolysis and the malate aspartate
shuttle to assess if metabolites are flowing into or out of the TCA 
cycle (Figure 6a). To do so, our analysis was focused on the 

concentration of aspartate, -KG, and glutamate. The malate 
aspartate shuttle anti-ports multiple metabolites over the 
mitochondrial membrane, facilitating gluconeogenesis and 
transport of energy into the mitochondria. Glutaminolysis 

produces glutamate which is converted into -KG and utilized 
in the TCA cycle. 

Fig. 6. Analysis of malate aspartate shuttle and glutaminolysis during infectious 
respiratory diseases. Time-course plots comparing the simulated concentrations 
of mitochondrial aspartate, mitochondrial a-ketoglutarate, and mitochondrial 
glutamate during infection by (a) Rhinovirus (b) Influenza virus strains (c) 
SARS-CoV-2, and (d) MERS-CoV. For each virus type analyzed, an uninfected 
control was included for reference of baseline metabolic level.

During rhinovirus infection, aspartate concentration in the 
mitochondria did not change compared to the uninfected control. 

-KG and glutamate concentration both remained like the 
uninfected control (Figure 6b). Aspartate concentrations during 
influenza virus infection, were mostly lower than in the control 
except for H5N1 in which levels recovered towards the end. All 

infections by strains of Influenza virus except H5N1 caused -
KG and glutamate concentrations to be elevated initially and 
then return to similar levels to the control. H5N1 infection 
diverged from this pattern and increased these metabolites in the 
second half of the simulation (Figure 6c). SARS-CoV-2 
infection shows increased aspartate concentration in the 

mitochondria, diminished levels of -KG, and a large increase 
in glutamate concentration compared to the control (Figure 6d). 
During infection with MERS-CoV, aspartate stayed low before 
a burst of metabolites increased the concentration very quickly 
to match that of the control. a-KG increased at 50 hours (2 DPI), 
peaking just before the end of the simulation at 125 hours (5 
DPI). Glutamate concentration followed a similar trend, with an 
increase over the uninfected control starting 50 hours (2 DPI) 
into the simulation and peaking also at 125 hours (5 DPI) (Figure 
6e). 

The differences between the rhinovirus infection and control 
are slightly higher in glutaminolysis than in any other pathway 
analyzed in the study. In general, glutaminolysis was slightly 
decreased in the infected simulation, reducing the number of 
metabolites within the TCA cycle, and very slightly decreasing 
the number of metabolites moved into the malate-aspartate 
shuttle and gluconeogenesis. In influenza, glutaminolysis was 
initially increased, pushing more metabolites into the TCA cycle, 
and most strains except for the H5N1, which is the most 
pathogenic of all the strains included in the analysis, decreased 
the activity of glutaminolysis as the infections cleared. H5N1 

had increased amounts of -KG brought into the TCA, and it 
leads to increased gluconeogenesis via the malate aspartate 
shuttle. SARS-CoV-2 infection showed increased 
gluconeogenesis, which decreased all metabolites within the 

TCA cycle, including -KG. Increased glutaminolysis caused 

the recovery of these concentrations and brings -KG back to 
the control concentration. During MERS-CoV infection, TCA 
cycle was supplied with many metabolites through 
glutaminolysis after approximately 50 hours post infection (2 
DPI). This had no effect on ATP produced from oxidative 
phosphorylation, and is likely associated with the pathogenesis 
according to Bharadwaj et al.[8]. 

F. Disease Severity Correlates with Higher Perturbation of

Metabolism

Using our M2 pipeline we have been able to compare
metabolic responses in infected versus an uninfected tissue 
specimen. By normalizing each final concentration value for the 
species within the model, we can compare various infections 
based on fold change in the infected with respect to the 
uninfected control (Figure 7). After performing this analysis, the 
data show that infection with rhinovirus  was easily identified as 
having very slight changes from its control for all metabolic 
pathways included in the model. With regards to flu, there was 
similar behavior within strains for all the pathways analyzed, 
although the highly pathogenic H5N1 strain stood out as having 
a slightly more perturbed metabolic profile with the PPP and 
glycolysis being differentially upregulated in comparison to the 
rest of influenza virus strains. SARS-CoV-2 infection showed a 
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similar magnitude of perturbation as the H5N1, although the 
PPP and some parts of glycolysis were in this case suppressed. 
Additionally, species associated with the TCA cycle were 
largely decreased, and gluconeogenesis species were increased. 
In MERS-CoV infection, glycolysis species were upregulated, 
TCA cycle was highly dysregulated, and fatty acid oxidation 
was upregulated. Overall, the severity of the infection correlated 
strongly with the level of fold change from the controls. MERS-
CoV shows indications that the TCA cycle was broken, with 
some portions being highly increased and others suppressed. 

Fig. 7. Summary heatmap showing final log2 fold change of various infections 

to their respective internal uninfected controls. Sections of the heatmap were 

labeled according to the portion of metabolism to which each species belonged 

with red representing upregulated and blue downregulated metabolic responses. 

IV. DISCUSSION

Metabolism is a massively and dynamically interconnected 
network of chemical reactions facilitated by a collection of 
enzymes unique to each species. We created the M2 pipeline 
representing large portions of metabolic pathways that are 
highly conserved in most eukaryotic organisms while 
accounting for multiple possible isoforms in our workflow. The 
M2 pipeline integrates theoretical and data-driven approaches to 
create a metabolic profile that allows for host metabolic 
response to various perturbations to be identified quickly after 
the experimental data (i.e., RNA-seq) is obtained. With 
emergent diseases being introduced to the human population, 
tools for a rapid analysis of the metabolic alterations during 
infection could be used to predict the metabolic fingerprint of a 
virus, which could provide initial insights into pathogenesis and 
severity of that particular biological threat. A tool such as our 
M2 pipeline could increase our level of preparedness to rapidly 
respond to critical events like the sudden emergence of a 
previously unknown viral disease. The modularity of the M2 

pipeline’s design allows for any gene expression dataset to be 
analyzed, although the quality of data is critical to allow for a 
more accurate predictive power in the analysis.  

The model of metabolism that we have created includes 
glycolysis, gluconeogenesis, the pentose phosphate pathway, 
fatty acid oxidation, the TCA cycle, oxidative phosphorylation, 
glutaminolysis, and the malate aspartate shuttle. This differential 

model encompasses many different pathways of metabolism 
that have not previously been combined in a mathematical 
model of metabolism. The wide range of pathways within the 
model allows for a detailed analysis for any gene expression 
input. The reactions where larger pathways converge, like the 
TCA cycle. offer ample opportunity to characterize the flow of 
metabolites through multiple pathways in a wide variety of 
contexts (i.e., infectious disease, drug discovery, ionizing 
radiation, or cancer).  

Glycolysis is associated with lactate production and supplies 
pyruvate for mitochondrial metabolism. In immunology, 
increased rates in glycolysis and lactate production are 
associated with the pro-inflammatory response and 
differentiation of M1 macrophages, Th1, and Th17 cell 
types[22]. Glycolysis is also often hijacked by viruses to 
produce building blocks for additional viral particles and is 
associated with increased viral activity[6, 23]. In our metabolic 
analysis of infectious respiratory diseases, we found glycolysis 
to be upregulated in a disease-severity dependent manner. 
SARS-CoV-2 and MERS-CoV both exported much more lactate 
than their respective control groups. This increase in glycolysis 
is likely due to viral intervention, and the identification of 
mechanisms that limit glycolysis and other viral-producing 
pathways may prove to have beneficial responses in disease 
outcome. Codo et al[4] showed that glucose-rich environments 
favored SARS-CoV-2 replication and suggested a glycolysis-
limiting therapeutic to suppress SARS-CoV-2 replication. 
Additionally, hyperglycemia and diabetes are predisposing 
factors for increased mortality from COVID-19[24, 25], 
providing further evidence that the metabolic environment on 
the host can have a significant impact on the outcome of the 
disease. Our modeling efforts can reproduce the increase in 
glycolytic flux seen experimentally and reported in the 
literature[4, 23, 26] using only gene expression data as input. 
From these analyses, the driving forces for glycolytic changes 
were determined to be mainly caused by upstream glycolytic 
activity and reduced pyruvate transport into the mitochondria. 

The PPP is another glucose consuming pathway that is 
necessary for normal cell function, its production of NADPH is 
required for antioxidant activities and nucleotide production is 
downstream of R5-P. Unlike glycolysis, it is unclear if 
upregulation of the PPP is universally beneficial or detrimental 
in viral infections. Keshavarz et al. identified the PPP as being 
detrimental during influenza infections due to the increase in 
nucleotide production for the viral particles[26]. The influenza 
virus infection simulations caused a much greater change in the 
activity of the PPP compared to rhinovirus. H5N1 is a highly 
pathogenic influenza virus strain, followed by 1918 HANA, 
1918 HANANS, and H1N1 being the least lethal[27-29]. The 
level of dysregulation in the PPP found in our analysis correlates 
well with the expected morbidity and lethality of the strain, 
suggesting that more virulent strains cause increased PPP 
activity. The TCA cycle, oxidative phosphorylation, fatty acid 
oxidation, glutaminolysis, and the malate aspartate shuttle all 
effect the metabolic profile within the mitochondria. Glycolysis 
and fatty acid oxidation feed the TCA cycle and the number of 
metabolites within the cycle are balanced by glutaminolysis and 
the malate aspartate shuttle. We observed fatty acid oxidation 
increasing initially in influenza infection, which has been linked 
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to the induction of innate anti-viral responses[30]. Our results 
show significant differences in fatty acid oxidation, but further 
investigation would be necessary to determine if the increased 
activity correlates with disease-or-strain-mediated morbidity. 

The increased oxidative stress seen in SARS-CoV-2 
infections may be playing a role in the decreased fatty acid 
oxidation we observe here. During the recovery phase of the 
SARS-CoV-2 infection, fatty acid oxidation increases beyond 
that of the uninfected, bringing acetyl-coA level nearly back to 
that of the control. The gene expression data associated with 
oxidative phosphorylation was missing from the dataset 
obtained for the SARS-CoV-2 study, so changes to ATP 
production due to gene expression changes in the electron 
transport chain are unable to be observed. MERS-CoV infection 
shows a strong decrease in oxidative phosphorylation during the 
initial portion of the infection, with the rate of production 
returning to normal levels afterwards. This decrease in ATP 
production has been observed experimentally: Pan et al. describe 
how the nsp1 protein inhibits oxidative phosphorylation in host 
cells during MERS-CoV infections[31]. Additionally, the 
MERS-CoV infection had a burst-like replenishment of the TCA 
cycle via glutaminolysis after the peak of the infection, which 
would suggest that glutamine metabolism may be important in 
the recovery of infection by MERS-CoV, whereas in SARS-
CoV-2 infections, glutamine metabolism is increased drastically 
during the initial phases. Bharadwaj et al has demonstrated the 
increase in glutamine metabolism as contributing to the 
pathogenesis of  SARS-CoV-2, and being directly activated by 
SARS-CoV-2 during infection[8] which strongly matches the 
results that we obtained from our pipeline. The M2 pipeline 
produces the most accurate results with high quality RNA-seq 
datasets that have a high coverage, but lower quality gene 
expression datasets or datasets missing genes still provide 
insight into the metabolic response to disease, allowing for 
greatly increased knowledge extraction from costly biological 
experiments. 

V. CONCLUSION

The analyses presented here were the result of our advanced 
M2 bioinformatics pipeline. From the outputs of the model, both 
the similarities that emerged between the infections as well as 
the differences represent useful comparative insights that can 
help develop novel treatment modalities against these viral 
infections. Many biologically relevant predictions on the 
metabolic response have been experimentally validated as found 
in published literature, showing how the data-driven calibration 
of the model accurately represents the biological pathways and 
provides a valuable tool for the fast and precise analysis of 
global metabolic networks.  Tools like the one presented here 
are important due to the constant threat of emerging or re-
emerging infections becoming pandemic events. The short time 
required between sequencing data acquisition to host metabolic 
modeling outputs improves the readiness against potential 
public health threats. The M2 pipeline can quickly take time 
course host gene expression datasets as input and return detailed 
predictions of metabolic profiles as outputs that can serve as 
initial estimates of severity of disease as well as provide insights 
into potential metabolic-related mechanisms of pathogenesis 
and potential therapeutic interventions. 
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