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ABSTRACT. Clinical symptoms resulting from microbial infection of the gastrointestinal (GI) tract are often ex-
acerbated by inflammation-induced immunopathogenesis. Identifying novel avenues for treating and preventing
such pathologies is necessary and complicated by the complexity of interacting immune pathways in the gut,
where inflammatory immune cells are regulated by anti-inflammatory cells. The ENteric Immunity Simulator
(ENISI) is a simulator of the GI mucosa created for testing and generating hypothesis of host immune mech-
anisms in response to the presence of resident commensal bacteria and invading pathogens and the effect on
host clinical symptoms. ENISI is an implementation of an agent-based model of individual mucosal immune
cells each endowed with a program for movement and differentiation according to their cell-type, i.e. epithelial
cells, dendritic cells, macrophages, conventional T cells, and natural T-regulatory cells. The internal programs
specify movement among the gut lumen, lamina propria, and blood in response to an inflammation-inducing
pathogen and tolerance-inducing commensal bacteria. The model focuses on the antagonistic relationship be-
tween inflammatory and regulatory (anti-inflammatory) factors whose constant presence characterize mucosal
tissue sites.

Through user-manipulation of cell type-specific programs, ENISI allows one to observe the effects of pheno-
typic changes in individual cell-types, observed in vitro, at the tissue level. As such it is a translational research
tool that allows one to : i) Test plausibility of in vitro observed behavior as explanations for observations in vivo/
in situ, ii) Propose behaviors not yet tested in vitro that could be plausible explanations for observations at the
tissue level. iii) Conduct low-cost, preliminary experiments of proposed interventions/ treatments. iv) Indicate
useful areas of research through identification of missing data necessary to address a specific hypothesis.

An example of such application is presented in which we simulate dysentery resulting from B. hyodysenteriae
infection and identify aspects of the host immune pathways that lead to continued inflammation-induced tissue
damage even after pathogen elimination.

1. INTRODUCTION

1.1. Enteric disease and immune pathways. Enteric diseases are diseases of the gastrointestinal (GI)
tract often caused by ingestion of microbes in food and water. Inflammation is the immune response
by which immune cells eliminate foreign microbes. This response at the site of infection determines the
likelihood of persistent infection as well as disease course and severity of clinical symptoms. For this
reason, understanding mechanisms of inflammation in the gut and determinants of its strength is a focus of
biomedical research that seeks to devise treatments and infection prevention strategies against gut pathogens
such as E.coli and H.pylori.

During inflammation, immune cells detect foreign microbes and secrete cytotoxic factors to eliminate
them. Though a necessary function, this occurs at the risk of elimination of bystander host tissue cells that
can be the basis of various clinical symptoms including lesions of the epithelial lining and bloody diarrhea.
As the GI tract is constantly exposed to foreign antigens, mostly innocuous, this inherent inflammatory
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Figure 1: Illustration of inflammatory and regulatory pathways described in section 1.2.

response must be regulated so that the system does not remain in a constant state of tissue-damaging hyper-
inflammation. This is carried out by the regulatory immune response triggered by factors such as host tissue
damage or commensal bacteria of the gut microflora. In this parallel response, immune cells are rendered
’tolerogenic’ or adopt a ‘regulatory’ phenotype, states in which the cell remains inactive toward a foreign
microbe as well as inhibits the inflammatory response in other immune cells. The effect of these tolero-
genic immune cells is an environment that requires more stringent conditions for induction of inflammation
decreasing the frequency of its occurrence and strength in terms of cytotoxin-mediated tissue damage and
pathogen elimination. Indeed, it is due to this immune regulation that the beneficial gut microflora, consist-
ing of approximately 10'# bacteria, is able to survive and play a critical role in host digestive and metabolic
processes.The current picture of the gut mucosa is one in which immune cells of the regulatory and inflam-
matory responses are in constant competition, with regulatory phenotypes generally predominating [9, 13].
The severity and efficacy of the inflammatory response is, therefore, a complex function of multiple, parallel,
competitive processes.

These responses can be defined as immune pathways. Here we define an immune pathway as a sequence
of events in which the first is the recognition of antigen by an immune cell, such that the occurrence of
each event in the sequence is necessary for the occurence of the next event in the sequence. We define an
immunopathological pathway as an immune pathway that leads to damage of host tissue.

Our research interest is identification of immune mechanisms that determine specific health outcomes
following enteric infection, such as full recovery or chronic inflammation. A health outcome is defined by
a set of clinical symptoms resulting from the acute inflammatory response to pathogen. More specifically,
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Definition of Terms
*  Anergic: Lacking the normal immune response to a particular antigen or allergen

*  Antigen: Any substance that stimulates an immune response in the body (especially the production of antibodies). These
include toxins, signs of tissue damage, and microbial components.

*  Commensal bacteria: Bacteria that colonize the mammalian gut and carry out processes beneficial to the host.

*  Cytokines: Signaling molecules secreted by immune cells including interleukins (IL), interferon (IFN), and tumor
necrosis factor (TNF) that carry out various functions depending on specific type.

*  Dendritic cells: An immune cell that recognizes and internalizes foreign microbes. Its primary function is to then
present components of the microbe on its surface to resting T cells that may or may not recognize the microbe “antigen”.

«  Epithelial barrier: Thin monolayer of epithelial cells separating the lumen and lamina propria regions of the gut.
*  Gut microflora: Population of microorganisms, mostly commensal, that live in the digestive tracts of animals.
¢ Immune regulation: Any process that modulates the frequency, rate, or extent of the inflammatory response.

+ Inflammation: A localized protective reaction of immune cells in tissue to signs of stress or pathogen presence that is
characterized by immune cell recruitment and sometimes tissue damage.

*  Lumen: The inner open space of a tubular organ such as the stomach or intestine.

*  Macrophages: An immune cell that recognizes and internalizes foreign microbes. Its primary function is secretion of
factors that recruit other immune cells from the blood and cytotoxins that kill microbes and host tissue cells.

*  Phagocytosis: Internalization of a microbe by an immature dendritic cell or resting macrophage. Generally followed by
degradation of the microbe.

*  Phenotype: The set of observable characteristics, (appearance, behavior, etc.) of an individual resulting from
environment-dependent gene expression.

e Self-antigen: A component that, upon recognition by an immune cell, induces a tolerogenic or non-reactive state. This is
often cellular debris in the system or a by-product of healthy metabolic processes.

e T-helper cells: Immune cells that, upon recognition of microbial components (antigen), secrete chemical signals that
enhance the activity of surrounding immune cells.

*  Thl: A T-helper cell phenotype associated with secretion of IL-12 and IFN-y, which promote inflammatory phenotypes
in macrophages.

*  Thl17: A T-helper cell phenotype characterized by secretion of IL-17 and associated with autoimmunity and
inflammation-induced tissue damage.

*  T-regulatory cells: Subpopulation of T cells that act to suppress activation of the immune system and thereby maintain
immune system homeostasis and tolerance to self-antigens and commensal bacteria.

Figure 2: Definition of anatomical and immunological terms not given in the text

we seek to identify immune pathways, particularly immunopathological pathways, initiated by pathogen in
the gut mucosa. We then seek to manipulate these pathways as forms of treatment.

For this purpose we present ENISI, a simulator of the inflammatory and regulatory immune pathways
specifically initiated by microbe-immune cell interaction in the gut. ENISI is a tool for mucosal immu-
nologists to test and generate hypothesized mechanisms for clinical enteric disease outcomes and propose
interventions through experimental infection of an in silico gut. Simulation outcomes given different exper-
imental conditions inform key mucosal immunity-related questions: What is the net response to a pathogen
given the complex interplay between both regulatory and inflammatory pathways? and Which aspects of
mucosal immunity allow efficient elimination of a pathogen while keeping immunopathogenic side effects
to a minimum?. Observation of in silico behaviors that are not readily seen through in vitro and in vivo
techniques, inform understanding of the system and help in generating novel treatment strategies that can
then be tested in the laboratory.

1.2. Mucosal inflammatory and regulatory immune pathways. Here we describe the specific inflam-
matory immunopathological pathways and the regulatory immune pathways encoded in ENISI as shown in
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Figure 1.

The mammalian gut mucosa can be divided into three sites: i) The Lumen, which has a direct connection to
the external environment, houses gut microflora and ingested substances such as food and foreign microbes,
ii)The Lamina propria (LP), tissue separated from the lumen by an epithelial monolayer that is occupied by
resting immune cells, iif) The epithelial barrier (EB) that divides the lumen and LP.

The inflammatory immune pathways (red lines) are as follows: 1. A pathogenic microbe enters the lumen.
2. Intestinal epithelial cells recognize pathogen and secrete microbicides and various signalling chemicals
(cytokines) [11]. Resting dendritic cells in the epithelium internalize the microbe and differentiate to an
effector phenotype (eDC) that presents components of the pathogen (antigen) on its surface 3. Chemicals
secreted by damaged epithelial cells recruit antigen presenting cells (APC), including macrophages and
additional dendritic cells. Activated, presenting eDC recruits resting T cells to the infection site and secrete
cytokines such as IL-12 and IFN-y that induce T cell differentiation to pro-inflammatory Th1 and Th17
phenotypes upon antigen recognition. 4. T cells secrete cytokines that enhance secretion of inflammatory
factors by surrounding T cells as well as induce macrophages to a M1 phenotype that secrete cytotoxic
proteases and radicals that kill invading bacteria as well as cause indiscriminate tissue damage. 5. Tissue
damage results in additional secretion of inflammatory cytokines by epithelial cells. This results in further
immune cell recruitment along with openings in the epithelial barrier that can allow direct pathogen entry
into the LP at which point recruited immune cells are activated to inflammatory phenotypes completing a
positive, inflammatory feedback loop. Inflammation generally dissipates when pathogen is eliminated and
direct immune cell stimulation ceases.

The alternate, regulatory pathway is composed of the following events: 6. Dendritic cells contact self-
antigen or commensal bacteria strains. 7. Upon recognition, dendritic cells differentiate to a regulatory
phenotype, often termed tolerogenic dendritic cells (tDC), that present components of the tolerance-inducing
material and secrete the anti-inflammatory cytokine IL-10. 8. IL-10 induces differentiation of macrophages
from an inflammatory M1 phenotype to a regulatory M2 phenotype that also secretes IL-10 and does not
secrete cytotoxins [9]. In addition, presenting tDC stimulates resting T cells and induces their differentiation
to an induced T regulatory cell (iTreg), also a secretor of IL-10. IL-10 secreted by iTreg and M2 reduces
inflammatory cytokine secretion from surrounding immune cells, dampening the inflammatory loop. It also
promotes further activation of additional M2 and iTreg and, thereby, closes a positive anti-inflammatory
feedback loop.

9. Another regulatory pathway involves natural T-regulatory cells (nTreg). These are T cells in the LP
that are pre-destined to be regulatory cells independent of the phenotype of the presenting dendritic cell
(eDC or tDC). Like iTreg, nTreg secretes IL-10 promoting further M2 creation. In addition, nTreg bind eDC
and inhibit their recruitment and stimulation of resting T cells to inflammatory phenotypes [22].

1.3. ENISI. ENISI encodes each immune pathway as an agent-based model representing each individual
cell that participates in each component event. Each individual is represented by a finite state automaton that
corresponds to an epithelial cell, a commensal bacteria, a foreign bacteria, a macrophage, a dendritic
cell, a ’sampling’ dendritic cell (sDC), a conventional CD4+ T cell (T cell), or a natural T-regulatory cell
(nTreg), where the possible states of the automata are listed in Table 1 and correspond to a cell’s phenotype
and, in some cases, its Location or its status as dead. A state transition represents differentiation to another
phenotype or contact-dependent migration. Cell names written in bold text refer to the corresponding model
automaton that represents the cell behavior in the system.

The automata may occupy one of three locations; lumen, LP, and blood. Each automaton is assigned
to a specific tissue site upon entry into specific states. Each tissue site is divided into sublocations. The
sublocation occupied by an automaton within its assigned tissue site changes randomly at discrete time
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intervals. When two individuals are in the same sublocation they are considered in contact and may or may
not interact depending on their state.

Immune response is modeled as updates in rules for movement and behavior of an individual cell upon
interaction with another.

As a spatially explicit, agent-based model ENISI simulations take in to account spatial-temporal het-
erogeneity across individual cells and allow stochasticity in cell behavior in the form of probabilistic state
transitions that are functions of tissue location, cell age, demographics of surrounding immune cells, and
duration of contact with other immune cells and antigen. The method allows one to manipulate individual
programs with a direct interpretation between changes in model rules and experimental modifications of
cells and observe the net effect that arises from localized interactions.

Users may control experimental conditions by using a simple scripting language to specify any of the
following features of the system: i) Infection specifics: dose and timing of pathogen entry; ii) Experimental
host phenotypes: parameters governing interactions between specific phenotypes to represent changes in cy-
tokine and cytokine-receptor expression; iii) Host immunological set-point: initial immune cell populations
present at the time of infection; and iv) Strain-specific functions of bacteria: Specifications of interaction
conditions and consequences for commensal bacteria and foreign bacteria that mimick those attributed to
experimental strains, i.e. the probability that bacteria induce secretion of inflammatory factors by epithelial
cells or IL-10 secretion by dendritic cells. The simulator efficiently simulates inflammation at a mucosal site
occupied by 10° individual cells, a greater number than published to date, within 1 hour.

2. ENISI: THE FORMAL MODEL

The system of immune pathways is represented as a graph dynamical system (GDS). GDS is an abstract
representation of a group of entities (cells, bacteria), modeled as nodes, and abstract interactions, modeled
as edges. This representation provides a sound basis to develop simulations of diffusion processes in such
systems. We present the basic elements of a GDS and then briefly discuss the representation of the system
of enteric immune pathways within its framework.

2.1. Graph Dynamical Systems. A graph dynamical system f3, is a 4-tuple § = (G, S, F,R) consisting of
a graph G(V,E) whose node set V represents the collection of agents and whose edge set E represents the
set of agent interactions. Let n = |V| denote the number of nodes in G. Each node has a state, a value
from a finite set S of all possible state values. Further, there is a family F of functions that describe state
transitions. Specifically, each node v; € V,1 <i < n, has an associated local transition function f; € F which
determines the next state of the node. In general, f; may depend on several parameters including the his-
tory of the current and previous states of v; and those of its neighbors in G. For example, a local transition
function for the state of v; at time (¢ + 1),s;(¢ + 1), may depend on parameters over a time window of du-
ration T,s;(t + 1) = fi(s:(0),N[i](6),E[i](6)),t — T +1 < 6 <t , where N[i](0) represents the states of
the neighbors of v; at time 0 and E[i](0) represents the states of the edges incident on v; at time 6 . Fur-
ther, each GDS has an associated update scheme R that determines the order in which the local transition
functions are computed and states of nodes are updated. For example, a synchronous (i.e., parallel) update
scheme is often utilized, where all f; are executed in parallel, to make the best use of parallel processing.
GDS with synchronous update are often called synchronous dynamical systems (SyDS). At any time ¢, the
configuration C(¢) of a GDS is a vector (s1(¢),s2(¢),...,8(¢)), where s;(r) represents the state of node v; at
time 7 . The time evolution of a GDS is represented by the sequence of successive configurations of the GDS.

2.2. System of immune pathways as a GDS. The system of immune pathways in ENISI is represented as
a GDS composed of the individual cells that participate in each event with in the pathway.
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The blood and tissue sites, Locations, are divided in to discrete patches, the sublocations, where a sublo-
cation is defined as the maximum volume at which an individual can be assumed to be in contact with all
other individuals in that sublocation. Individuals occupy and migrate between Locations according to a
schedule assigned to each individual by their state. Cells occupy a different randomly chosen sublocation
of the assigned Location at short time intervals representing random movement and resulting in a dynamic
contact network.

G is the contact graph where nodes are individual cells and edges indicate co-localization in the same
sublocation. The cells are represented as a set of finite state automata < cj...c, > that are considered in
contact when in the same sublocation. Hence, the model is spatially explicit and the notion of edges is
implicit as we assume that, within a sublocation, all cells are in contact. The system can thus be considered
a Co-evolving Graphical Discrete Dynamical System (CGDDS) where the nodes (cells, bacteria) and edges
(contacts) of a graph (the cell-contact network) are updated at discrete time steps representing phenotype
change and migration.

Each individual, ¢;, occupies a state from the set S composed of states listed in Table 1. Each state s; € S
corresponds to either a cell’s phenotype, the Location of the cell, or its status as dead.

The state transition function f; depends on the current state of the individual s; and at least one of the
following: i) the amount of time i has occupied its current state and ii) the states of its contacts in the graph.
For each state s there is a set of Interactor states I; such that if a contact j of individual 7 is in a state s; € I,
i will interact with j and possibly transition states. Whether transition actually occurs upon interaction is
probabilistic. Upon transition, the state which i enters depends on s; as specified by its transition function,
fi € F. The function for the interaction probability may be single contact-dependent, calculated in a pairwise
manner, or multicontact-dependent, a function of the configuration C; of the subnetwork in the specific
sublocation occupied by i.

The set of functions, F, is formalized in a set of state-charts, described below in Section 2.4 in greater
detail. Upon a change of state, the individual may or may not be assigned to a new Location. This contact-
dependent transition is an explicit representation of contact-dependent cell differentiation, such as the induc-
tion of memT — Th upon contact with eDC. T cell activation requires the binding of its surface receptor to
antigen that is bound to the dendritic cell surface. Transitions may also implicitly represent differentiation
induced by cytokines secreted by surrounding cells, as is the case for a M1 — M2 transition, which is a
function of the cytokine concentrations in the local environment.

Each event of the immune pathway is then defined by a specific state transition s; — s;. For example,
tissue damage occurs when one cell transitions from the EC state to the pEcell state. A specific health
outcome is a stable configuration of the system, Cy, following contact between one of the bacteria automata
and one of the immune cell automata. For example, immunological tolerance, the outcome in which there
is no immune response to the presence of a microbe and the microbe persists in the gut, is defined by a
configuration in which no commensal bacteria or foreign bacteria occupy the B_dead or Bf dead states
and no immune cells occupy a state that corresponds to an inflammatory phenotype; eDC, Th, or M 1.

2.3. Approximations to the biological model. The contact-dependency of state transitions in the graphical
framework as well as the need for computational efficiency require a number of approximations to the
biological model.The GDS model stipulates that for a state change in one individual to be induced by another
individual, the individuals must be co-located. Hence, the model cannot explicitly include induction of
state-transitions across location barriers as may occur when cytokines secreted by a cell in the LP influence
migration of cells in the blood. To reduce complexity, individuals are not newly created or removed from
the contact network G following the start of the simulation. Rather biological processes that require these
functions are either not included or represented in an indirect fashion. For example, the model does not
include the constitutive flow of resting immune cells in and out of tissue. Nor do we represent bacterial
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replication. The latter approximation can be interpreted as the assumption that each bacterium in contact
with the epithelial barrier will be rapidly removed by immune cells before it is able to replicate.

Given these model approximations, we describe how the following biological functions are represented
in the ENISI implementation: i) bacterial death, ii) lymphocyte recruitment, iii) T cell proliferation, and iv)
T cell death. Descriptions of each state referred to in italics is given in Table 1.

i) Bacterial death: As scaling is a constraint, only those bacteria in contact with the epithelial border are
represented. Given these simplifications, bacteria in the lumen does not explicitly ’die’, but rather it is as-
sumed that when one commensal bacterium is removed by phagocytosis, another bacterium, immediately
takes its place due to the high concentration in the outer lumen. Therefore, an individual commensal bacte-
ria in the lumen, i.e. the B_lumen state, is not explicitly removed when it interacts with a dendritic cell and
phagocytosis occurs. Only the dendritic cell changes states from iDC_lumen — eDCL. In addition, to con-
serve the number of individuals in the system, we allow individuals in the B_LP state that are phagocytosed
to transition to the B_lumen state, replenishing the lumen population.

ii) Cross-barrier recruitment: A key function of pro-inflammatory epithelial cells, M1, and eDC is secre-
tion of MCP-1, a factor that recruits resting T-cells as well as resting DC and macrophage precursors, called
monocytes, from the blood to the inflamed LP tissue. Recruitment, therefore, requires that one individual
occupying the MASource, DCSource or memT Source state undergo a state transition to MO0, iDC, or memT
in the LP, triggered by the transition of another individual from M0 — M1 or iDC — eDC. The model stipu-
lates that any state transition dependent on the state of another individual be contact-dependent and defined
as an explicit interaction. Hence the function of recruitment of monocyte and memory T cells in the blood
by M1 and eDC in the LP is represented as follows: Individuals in the M1 or eDC state briefly migrate to
a sublocation in the Blood location where they contact individuals in the MASource, DCSource, or memT
states. This induces the contacted monocyte or memory T cell to transition to an MO0, iDC, or memT in the
LP. Upon this transition the individuals are assigned a new schedule to the LP. The number of memory T
cells and monocytes recruited by each M1 and eDC are determined by the parameters €. and & (Table 2),
respectively, the average number of monocytes or memory T cells a M1 or eDC contacts when it enters the
Blood. This is set by the number of individuals assigned to the MASource, DCSource, and memT Source
states at the start of simulation. These were initially set to give & and & the arbitrary value of 10.

iii) T cell proliferation: The current software requires that all individuals in the entire simulation be de-
fined initially by a state and a location. Hence, all nascent T cells that may spawn from a proliferating
T cell are anticipated and predefined with the states ThSource or iTregSource and are assigned to the lo-
cations ThSource and iTregSource. When an individual is in one of the proliferating states, ThProlif or
iTregProlif, it may then migrate to these locations and induce the source cells to its corresponding phe-
notype. For example, when an individual enters the ThProlif state it briefly migrates to a sublocation in
T hSource where it randomly contacts individuals in the ThSource state. Contacted individuals then transi-
tion from ThSource — Th and are assigned to the LP. Proliferation by individuals in the iTregProlif state
is represented in the same manner. Hence, the average number of daughter cells from one proliferating T
cell pr (Table 2), is determined by the average number of ThSource a ThProlif contacts when it visits the
T hSource location and is set by the initial number of individuals in the ThSource or iTregSource states.

iv) T cell death: In the true mucosa, when T cells are no longer active a fraction revert to a resting memory
T cell state and the rest undergo programmed cell death. To conserve the number of represented individuals
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in the model, when individual T cells undergo programmed cell death they do not enter a dead state. Rather,
they replenish the ThSource and iTregSource population pools.

Table 1: Model States

Symbol State Initial population size
Phenotypes

memT CD4+ Memory T cell 1-103
Th Active CD4+ T helper cell 0
iTreg Induced T regulatory cell 0
nTreg Active natural T regulatory cell 0
mem_nTreg Resting natural T regulatory cell 0
iDCLumen Immature sDC in the superficial LP with access to the Lumen 1000
iDCLP Immature dendritic cell in the LP 1000
eDC Effector dendritic cell in the LP 0
tDC Tolerogenic dendritic cell in the LP 0
eDCL Effector sDC in the lumen 0
tDCL Tolerogenic sDC dendritic cell in the lumen 0
DCAnergic Anergic dendritic cell 0

MO Undifferentiated macrophage 1-103
M1 Activated inflammatory macrophage 0

M2 Activated regulatory macrophage 0

EC Healthy epithelial cell 104[1 6]
pEcell Damaged or pro-inflammatory epithelial cell 0
MASource monocytes: MA precursor 10°
DCSource monocytes:DC precursor 10°
memT Source  memory T cell in blood 104
ThSource Potential child cell from a proliferating Th 5.10°
iTregSource  Potential child cell from a proliferating iTreg 5-10°
Locations

B_lumen Commensal bacterium in the lumen 1000
Bf lumen Foreign bacterium in the lumen 30
B_LP Commensal bacterium in the LP 0
Bf_LP Foreign bacterium in the LP 0
Death

Edead Killed epithelial cell 0
B_dead Killed commensal bacterium 0

Bf dead Killed foreign bacterium 0

2.4. State transition functions. Here we describe the state transition functions for each individual. An
individual may be one of seven automata corresponding to an epithelial cell, a commensal bacteria, a for-
eign bacteria, a macrophage, a dendritic cell, a >sampling’ dendritic cell (sDC), a conventional CD4+
T cell (T cell), or a natural T-regulatory cell (nTreg) depending on the state it is initially assigned at the
start of the simulation. State transition functions for each automaton are given in a state-chart formalism [8].
In the figures that follow, ovals represent states of the automaton. Solid arrows represent time-dependent
transitions labelled with the time in one state before transitioning to another. The dashed arrows represent
single contact-dependent transitions, labelled with the set of Interactor states necessary to induce state tran-
sition and, in parenthesis, the probability of transition upon interaction. The default probability is 1. Dotted
arrows represent multicontact-dependent state transitions and are labeled with the function that determines
the probability of interaction. Unlabelled solid arrows indicate that transition automatically occurs at the
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next update. States outlined in pink indicate the initial state that determines which automaton a cell will be.
States are depicted in boxes labelled with blue text that indicate the specific Location to which individuals
in the state are assigned. Parameters are listed in Table 2 and are referenced in the following descriptions.

Table 2: Parameter values

Symbol Parameter DefaultValue
Birth/death

UE Turnover time of epithelial cells 12hrs[16]
ur Time a T cell remains active Sdays [19]
U0 Time a macrophage remains active 75 days
Uq Time a dendritic cell remains active 1 day [17]
11973 Time a sDC remains active 1 day [17]
Uee Probability that pEcell is killed by inflammatory factors

pr Average number of daughter cells produced by a proliferating T cell 500 [23]
prr Average number of daughter cells produced by a proliferating nTreg 0

Migration

& Average number of monocytes recruited by a single eDC, M1, or pEcell 10

& Average number of resting T cells recruited by a single eDC, M1, or pEcell 10

By Probability that bacteria will enter the lumen upon contact with a pEcell 1

Contact/interactions

ar Probability of memory T cell stimulation 1

arr Probability of memory nTreg stimulation 1

vr fraction of active T cells that become memory T cells 0.1[15]
Via Probability that M; switches to M»

\%31 Probability that M, switches to M

aj co-efficient of vy, for activators 1

i co-efficient of vy, for inhibitors 1

¥ exponent of Vi, 4

ap co-efficient of v, for activators 1

i co-efficient of v, for inhibitors 4

2 exponent of v,;
VBm probability that microfloral bacteria induces inflammatory phenotype in macrophages 0

VBD probability that microfloral bacteria induces inflammatory phenotype in LP dendritic cells 0

VBs probability that microfloral bacteria induces inflammatory phenotype in ’sampling’ dendritic cells 0

VEC Probability that EC transitions to pEcell upon contact with inflammatory factors 0.05

VEB Probability that EC is damaged by microbial toxins 1

Epithelial Cells (Figure 3) Epithelial cells are assigned simultaneously to the LP and Lumen locations
representing its status as a barrier. These cells are static and do not change sublocations. Initially in the
healthy EC state, the cell transitions to a damaged, pro-inflammatory state, pEcell, with the probability of
Vgc upon contact with inflammatory immune cells, individuals in states Th, M1, or eDC. This represents
secretion of cytokines, such as IL-6 and IL-17, that induce the NF-kB pathway in epithelial cells that leads
to secretion of various pro-inflammatory mediators [2, 11] as well as cytotoxins secreted by M1 that damage
epithelial cells. This transition also occurs in the presence of foreign, pathogenic bacteria that can induce
epithelial damage with a probability of Vg, which will be specific to the bacterial strain that foreign bacteria
represents.

Upon continued exposure to Th and M1, the damaged epithelial cell may transition to Edead state rep-
resenting death of the epithelial cell that can occur with continued exposure to toxic factors secreted by
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Epithelial Cell
LP/Lumen

Th, M1, eDC, eDCL

(VEC), Th, M1

UE UE

Figure 3: Automata for epithelial cells; individuals initially assigned the EC phenotype

these inflammatory cells. In the Edead state epithelial cells no longer secrete pro-inflammaotry cytokines.
pEcell and Edead transition to a healthy state after a time period of Ug representing constitutive turnover
that allows replacement of dead and inflammatory epithelial cells with healthy ones [16].

Commensal Bacteria (Figure 4) The model includes individual bacterium of the microbiota that are

Commensal Bacteria
Lumen
T
|
1 pEcell
B Dead : Bp),
Edead
|
‘ S o |
pEcell, > L
Mi(uM1), | LP
iDC, Mo, S
DCLumen B_L P

Figure 4: Automata for commensal bacteria; individuals initially assigned the B_lumen phenotype

located in the lumen (B_lumen). In the true system this is a diverse population of different strains. Here we
endow each individual with behaviors assumed to be shared by most commensal strains. From the lumen,
individuals may migrate to the LP and transition to B_LP when in contact with a pEcell with a probabil-
ity of fB,. This represents cytoskeletal changes induced by inflammatory factors that may render epithelial
cells more permeable [2]. This migration may also occur when B_lumen is in contact with a dead epithelial
cell (Edead) representing contact with an opening in the epithelial barrier. Individual bacterium in either
location may be killed by microbicidal factors secreted by neighbors in the pEcell and M1 states as well
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as phagocytosis by resting macrophage (M0) and dendritic cells (iDCLP) upon contact. Shortly after death,
entry in to the B_Dead state, the individual re-enters the B_lumen state to replenish the pool of commensal

bacteria in the lumen which the model assumes to be unlimited.

Foreign Bacteria (Figure 5) Foreign bacteria is assigned to the Lumen initially (Bf_lumen) representing

Foreign Bacteria

Ecell,
Lumen PBp, |LP g/ll(ETLMl),

Edead iDC, Mo
..... B 1p Jo|-2GY0. »( Bt_peaa
A

Figure 5: Automata for foreign bacteria (pathogen); individuals initially assigned the Bf_lumen phenotype

entry of a pathogen. Here it may contact iDCLumen at which point it transitions to Bf_dead representing
internalization by an immature dendritic cell. Alternatively, if it contacts a damaged or dead epithelial cell
it may migrate to the LP (Bf_LP) representing a break in the epithelial barrier. Like commensal bacteria,
foreign bacteria in the LP may be eliminated upon contact with microbicide-secreting epithelial cells, and
cytotoxin secreting 7h and M1. Alternatively it may transition to Bf_dead upon contact with and assumed
internalization by iDCLP or MO.

Macrophages (Figure 6): Macrophages occupy the LP where they move randomly and are initially in
a resting MO0 state. Upon contact with neighbors in the B_LP state, MO0 transitions to M1 with a proba-
bility of vpy, representing the percent of microbiota that is recognized as foreign and M2 state with the
probability of 1 — vy, In the healthy model vgy; = O representing a microflora composed completely of
tolerance-inducing commensal bacteria and a macrophage population that recognizes it as such ??. It is well
established that macrophages may switch phenotypes as the cytokine ratio changes in the environment [9].
M2 may switch to M1 in the presence of inflammatory cytokines such as /FNy and TNF a.. Conversely,
M1 may switch to M2 when in the presence of the regulatory cytokine IL-10 . In the model, these switches
occur with a probability proportional to the number of inflammatory cytokine-secreting cells, N, and IL-10
secreting cells, R, the shared sublocation. M1 switch to M2 with the probability of v, (Equation 1), where
R is the total number of contacts that are of a regulatory phenotype: tDC, M2, iTreg, nTreg and N is the
number of contacts that are of a inflammatory phenotype: eDC, M1, Th, pEcell, a; and i| are constants that
determine the threshold for the R : N ratio at which v;, increases, and y; is a constant that determines the
rate at which vy, increases with the R : N ratio. M2 switches to M1 with the probability v,; (Equation 2),
where a», ip, and y, are constants that may differ from ay, i1, and y;.

aiR )
1 M1 = M2) = vjp = (—
(1) p( ) =Vi2 (a1R+i1N

aN ;
2 M2 > M1)=vy =(———— )72
2 p( ) = Va1 (izR—i—azN)

In the case of no cytokine stimulus, i.e. no contact with individuals in either inflammatory or regulatory
states, an activated macrophage will revert back to a resting state after a specified period of time, 0. To
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Figure 6: Automata for macrophages; individuals initially assigned the MO or MASource phenotype

represent monocyte recruitment, individuals initially in the MASource state and assigned to the Blood tran-
sition to M0 when in contact with individuals in the pEcell, M1, or eDC states. Upon entry in to the MO
state the individual is assigned to the LP.

Dendritic Cells (Figure 7): Dendritic cells are initially in a resting, immature state in the LP (iDCLP).
These may be referred to as LP dendritic cells and are distinct from the sampling’ dendritic cells associated
with the EB. The state transition model is similar to that of macrophages. Upon contact with bacteria an
individual in the iDCLP state transitions to an inflammatory effector DC (eDC) with the probability of vzp
and remains in the LP. With the probability of 1 —vpp an individual in the iDCLP state will transition to a
tolerogenic DC state (tDC). The individual remains in one of these active states for a time period , before
migrating or dying [17]. The model represents this removal by reversion to the iDCLP state, recycling the
individual to replenish the immature dendritic cell pool from an assumed unlimited monocyte pool. Upon
contact with neighbors in the active nTreg state, eDC is rendered anergic at a probability of kr, transitioning
to the eDCanergic state, where it is incapable of stimulating T cells [9]. DCSource are assigned to the blood
and transition to iDC when in contact with individuals in the pEcell, M1, or eDC states. At this point the
iDC is assigned to the LP.

‘Sampling’ Dendritic Cells (Figure 8): sDC represents a dendritic cell that resides in the superficial LP,
in association with the EB, where extensions of its cellular body breach the EB to contact and ’sample’
microbes in the lumen. These dendritic cells are believed to be a distinct phenotype from LP dendritic cells
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Figure 7: Automata for dendritic cells; individuals initially assigned the iDCLP or DCSource phenotype
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Figure 8: Automata for dendritic cells; individuals initially assigned the iDCLumen phenotype

described above [11, 21]. This is represented by assigning resting sDC to the lumen represented by the
iDCLumen state. It can be seen that the transition path from iDCLumen is similar to LP dendritic cells in
that tDCL and eDCL are assigned to the LP and carry out the same functions and behaviors as eDC and tDC.
However, the parameters governing lifespan and predisposition towards effector or tolerogenic phenotypes
following antigen recognition may differ [21]. As a simplification, the default model assumes the same lifes-
pan and probabilities of differentiation upon antigen recognition as dendritic cells deeper in the LP. These

assumptions may be revisited at a later date or modified by the user.

Conventional CD4+ T cells (Figure 9): To conserve the number of individuals, the model only repre-
sents T cells that specifically recognize and are stimulated by products of the commensal microflora or the
pathogen represented by foreign bacteria. A T cell is initially in a resting, memory state in the LP (memT)
or blood (memT Source). An individual in the memT state will transition to an active inflammatory Th, a
Thl or Th17, when in contact with neighbors in the eDC state. Alternatively, it may transition to an active
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Figure 9: Automata for conventional CD4+ T cells; individuals initially assigned the memT or memTSource phenotype

iTreg when in contact with neighbors in the tDC state. This rule represents the fact that T cell phenotype
depends on the cytokines secreted by the antigen-presenting cell (APC) during antigen recognition by the T
cell receptor [18]. In either case, activation occurs with a probability of ¢r. The value of o represents the
probability that the antigen presented by a specific APC is recognized by the receptor of the contacted T cell.
Upon stimulation the T cell enters a proliferation state, ThProlif or iTregProlif, for approximately 6 hours
[26]. In this state the cell can induce transition of source cells to a Th or iTreg state giving rise to a new
population of active T cells of its same phenotype. The value pr is the average number of children T cells
produced by one proliferating T cell. From this state, the individual T cell transitions to a non-proliferating
active state, Th or iTreg. T cells remain in an active state for a period Uy after which a fraction, vy, become
memory T cells and may be re-stimulated by APC, i.e. individuals in the M1, M2, tDC, or eDC states. The
rest undergo programmed cell death represented by reversion to its associated source state, ThSource or
iTregSource.

Natural T-regulatory Cells (nTreg) (Figure 10): Natural T-regulatory cells follow a very similar path
to conventional T cells. The primary difference is that an activated nTreg has only one, regulatory pheno-
type regardless of the state of the antigen presenting macrophage or dendritic cell. nTreg proliferate upon
stimulation giving rise to pr, daughter cells. Whether memory nTreg proliferate upon stimulation in vivo is
still not clear [24]. Hence, the value of pr, may be assigned according to the assumption one wishes to make
regarding nTreg proliferation capacity following antigen recognition. Upon contact with neighbors in the
M1, M2, eDC, or tDC state an individual in the mem_nTreg state transitions to the active nTreg state with
a probability of oy, , potentially different from that of conventional CD4+ T cells. However, in the default
model o7, = or.
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Figure 10: Automata for nTreg cells; individuals initially assigned the mem_nTreg or mem_nTregSource phenotype

3. IMPLEMENTATION

3.1. Rule Specification. Simulation specifications are set by the configuration file, the interaction man-
ifestation, and the scenario. The configuration file sets the length of the simulation and which state tran-
sitions are multicontact-dependent (discussed below). The interaction manifestation calculates whether an
interaction results in a state transition and the path of state transitions for each automaton. Each manifes-
tation is encoded as a probabilistic timed transition system (PTTS), an extension of the finite state machine
(FSM), with the following components: (1) Each individual that interacts with another will progress through
a series of states. Each state is assigned to an Interactor Set, which determines with which other states it
will interact. (2) An individual stays in a state for a period of time (dwell time) and then transitions to a suc-
ceeding state. Both the dwell time and the state transition are probabilistic. Once the cell has interacted, the
progression of states and dwell times is purely a local calculation and is not affected by any other individual.

The scenario specifies state-dependent schedule assignment and state transition conditions that can over-
ride the transition pathway encoded in the manifestation. This is done in the form of interventions that may
be implemented throughout the simulation. Each file is discussed in further detail in Appendix A.

3.2. Computation structure. The computation structure of this implementation consists of three main
components: cells, locations, and message brokers. We assume a parallel system consisting of N cores,
or processing elements (PEs). Processing proceeds in the following manner:

(1) Partitioning: Cells and locations are partitioned into N groups denoted by C1,C>,...,Cyand Ly, L, ...

respectively. Currently the distribution is done in a round-robin fashion to allow even load balanc-
ing and simpler data management. Each PE also creates a copy of the message broker, denoted by
MB)|,MB,,...,MBy. Each PE then executes the ENISI algorithm on its local data set (C;,L;).

(2) Computing Visit Data: The first step consists of computing a set of visits for each individual, C; for
the cycle. This also involves computing any state changes and applying events such as interactions,
interventions, etc. A light-weight “copy” of each cell (called a visit message) is then sent to each
location (which may be on a different PE) via the local message broker.

(3) Computing Interactions: Each location receives the visit messages and forms a serial discrete event
simulation (DES) by collecting the messages into a time-ordered list of arrive and depart events.
Using this data, each location computes interactions for each individual at that location. Outcomes
of these computations are then sent back to the “home” PEs of each cell via the local message
broker.
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(4) Collecting Interaction Messages: Interaction messages for each cell on a PE are merged, processed
and the resulting state of each affected cell is updated.

All the PEs in the system are synchronized after each simulation phase above. This guarantees that each
location has received all the data required to form a DES and each cell has all the data needed to compute its
new state. Below is a pseudocode description of this parallel version of the ENISI algorithm:

initialize;
partition data across PEs partition;
for 1 =0to T increasing by At do
foreach cell c; € C; do
send visits to location PEs;
compute Visits(j,f to t + Atr);
| sendVisits(MB;);
Visits «— MB;.retrieveMessages();
synchronize();

foreach location I, € L; do
compose a serial DES;

makeEvents(k, Visits);
turn visit data into events;,
computelnteractions(k);
Process Events;
| sendOutcomes(MB;);
MB; retrieveMessages();
synchronize();
foreach c; € C; do
combine outcomes of multiple interactions;
L updateState(c );

The ENISI framework is implemented in C++ and uses the Message Passing Interface (MPI) for dis-
tributed processing. An instance of the ENISI algorithm is run on each PE.

3.3. Algorithm. Here we describe the ENISI algorithm in further detail. This is an agent-based interaction
algorithm that i an extension of one previously described in [3]. In short, the global contact graph and state
of individual cells is updated in eacgh cycle through 3 phases of computation. Each cycle represents six
hours of simulation time. These phases are described below using the example shown in Figure 11 that
depicts the movement and interaction of a set of individuals [i j k ¢ u] among a set of sublocations [y z].

Phase 1: Each individual is assigned a schedule (Fig. 11A )

At the beginning of each cycle, each cell is provided a schedule according to its initial phenotype. This is a
structure that specifies the tissue site (Location) and sublocation that will be occupied by each individual i
and the times at which i arrives (StartTime) and i departs (EndTime) the sublocation.

Phase 2: Sublocation builds network and calculates interactions (Fig. 11B)

Each sublocation receives the list of individuals that will occupy it throughout the cycle along with the ar-
rival and departure times of each. Each time an individual k arrives in sublocation y, it is added to the current
contact network in the sublocation y, gy, which is a subnetwork of the global network G. Let g; be the
set of individuals in the subnetwork g, at time ¢. Each time an individual i departs sublocation y at time ¢,
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A. Phase 1: Each cell gets a schedule

Schedule for individual i on day 1:

Location Sublocation StartTime EndTime
LP y 0 30
LP z 31 60

B. Phase 2: Each sublocation accepts list of visits

sublocation y: sublocation z :
ID StartTime EndTime ID StartTime EndTime
i 0 30 q 0 40
b 25 35 u 10 45
k 29 35 i 31 60
subloc y subloc z
o t=28
@ 20

C. Phase 3: Each cell assesses messages

e, el 35 T
@}

DL M3 ™~
@)

Figure 11: Individual i is in the eDC state and is able to induce a state transition in j, which is of a memT phenotype. At time t = 28, i and j are in the
same sublocation according to the schedules assigned in phase 1. At time t=29 k enters sublocation y and is now in contact with i and j. At time t = 30, i
departs sublocation y to sublocation z. Sublocation y then calculates whether a state transition occurred for i, j, and k. It is determined that a state transition
occurs in j and sublocation y sends a transition message to j. In phase 3 j receives the transition message and transitions to a new state determined by the
T cell-specific automata probability of Psjx = 0.

the sublocation performs the following processes: i) i is removed from g;, ii) sublocation y calculates if i
interacts; a function of the amount of time i was in contact with each of the other cells in g;, its state s;, and
the configuration of gg iii) sublocation y carries out the same calculation on the remaining individuals j and
k upon departure of i.

Whether an individual interacts with others in g; is determined by a probability p calculated by one of
two functions:
i) A single contact-dependent function given in Equation 3 where 7 is the duration of contact, and p is a
constant. This is a pairwise calculation. Hence, if an interaction occurs while performing the calculation
on j, only j will receive the message and potentially change states. In other words, the contact graph is
directed in that i points to j, when i is able to induce a transition in j. If j also induces a transition in i upon
interaction, that is s; € Iy;, then a separate interaction is calculated on i.
i) A multicontact-dependent function given in Equation 4 where A is the total number of neighbors that
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induce a state change and / is the total number of neighbors that inhibit the state change. The variables a, i,
and y are constants.

3) p=1—exp(zIn(1—p))

aAd \’
@ P= (aA—HI)

The state of the individual i which of the two functions is used. If a state-transition occurs for an indi-
vidual j then sublocation y sends an interaction message to j. However, the state of j will not immediately
change.

Phase 3: Individual receives interaction message and determines new state (Fig. 11C)

At the end of each 6 hour cycle, if an individual j received a message it then transitions according to the
specifications in the manifestation. In the single contact-dependent transitions, the individual determines
to which state it transitions according to its current state and the phenotype of the interactor as this specifies
the manifestation used to determine the conditions of the state transition. In the multicontact — dependent
transition, the new state is determined by the current state alone. The state transition to the determined state
then occurs at the probability p; ., the probability of transition of individual in state s; to the next state x in
the transition pathway of its automaton specified in the manifestation.

This implementation employs two simplifications that require several model approximations; synchronous
state update and the assumption of full connection of each subgraph. Here we discuss each:

Synchronous update scheme: All states are updated at the end of an cycle according to the conditions of
the first interaction message during the cycle. Hence, any changes in behavior that result from the state
transition do not take place until the next cycle. The model, therefore, assumes a 6 hour delay between a
cell receiving the signal to differentiate and actual expression of cytokines or movement-mediating factors,
such as integrins, that will affect subsequent movement, contacts, and effects on contacted cells. Another ef-
fect is an introduction of error when a bi-directional interaction is meant to result in the immediate removal
of one of the individuals of the interacting pair. This is the case for interaction between a dendritic cell
and a foreign bacteria. This interaction induces transitions iDCLumen — eDCL in the dendritic cell and
Bf _lumen — Bf _dead in the foreign bacteria. In the true system, the foreign bacteria would be removed
as internalization is required for dendritic cell activation. However, in the model, bacteria will remain in the
Bf_lumen state for the duration of the cycle and be free to interact and induce iDCLumen — eDCL transition
in other dendritic cells that it contacts in that period. This could be interpreted as each model bacterium
being a representative of a population of bacteria such that when one interacts with an immune cell and
dies, the others are able to continue on in the system. Hence, one bacterium can be considered a group of b
bacteria where b is the average number of individuals in the MO0, iDCLumen and iDCLP states it is expected
to contact in one cycle.

Pairwise contact in complete graph: Each subnetwork g in a sublocation is a complete, fully connected
graph. In the case that an interaction calls for a single contact-dependent transition there arise situations in
which i may simultaneously be in contact with individuals of its interactor set Ij;, that lead to different state
transitions. An example is a resting T cell in contact with both a tDC and eDC. In such cases, the individual
“chooses” which individual to interact with probabilistically. In the default settings, this probability is 0.5.
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3.4. Parameterization. Table 2 list the parameters of the ENISI model along with the default values as-
signed. Values are assigned from literature when direct measurements are available. Others were given with
basic assumptions of the model that are described throughout the text of Section 2. For example, ENISI
only simulates those cells that recognize and react to commensal bacteria and the pathogen represented by
foreign bacteria. Hence, the parameter a7 is set at 1, all T cells represented have receptors specific to the
bacteria present. In addition, it is assumed that damaged, pro-inflammatory epithelial cells are completely
permeable to bacteria by setting B, = 1. Macrophages are assumed long lived and remain in the active
state by setting L0 to be the length of the simulation. Where transition probabilities could not be logically
reasoned from the knowledge of the system, we initially assume that each contact that may result in a state
change does resulted in the state change.

Certain parameters will have to be estimated to represent specific experimental conditions. These include
parameters governing state transition functions that involve interaction with foreign bacteria where foreign
bacteria is meant to represent a specific pathogen. Such parameters will have to be fit to experimental
infection data for the specific pathogen to be represented. Such infection studies generally report data in the
form of qualitative measurements of symptom severity such as epithelial damage and duration of illness that
can be mapped to the number of individuals occupying a certain state in the model, i.e. the configuration
of the system on a given day d. There are three types of parameters that govern whether an individual will
occupy a specific state s on day d post-infection given it is in state x on day d — 1. These are i) the dwell time
in state s, i) the probability p;, that an individual in state s will transition to state x, and iii) The constants
of the interaction equations (Equation 3 and Equation 4). Most dwell times are available in the literature
leaving the need to estimate p,;.

To reproduce dynamics seen experimentally, we identify cell population of a state s whose count does
not fit the configuration mapped to the experimentally observed health outcome. We then assign ranges to
the transition probability that yields the desired count with Equation 5 which gives the expected number
of individuals in state s on day d, K';i , where x is the preceding state to s in the manifestation, p,; is the
probability of the transition x — s upon interaction, KZ’I is the number of individuals in a state from the set
I, of states that interact with x, sublocy is the constant number of sublocations in Location y, and &, is the
constant number of times individuals in state x change sublocations in one cycle. The estimated value of py,,
Psx 1s then calculated from Equation 6 holding the variable de ~1 at its value with some initial value for Dsx

and setting Kf to the expected value determined from experimental data. During calibration, values for py
are then sampled from a tight range around py;.

—1,.d—1
d_pxsKZ Kf &

5 K¢ =

) s subloc,
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6 A — Y&

( ) pxs KgileClilex

The number of sublocations in each Location affects the rate at which cells contact eachother. Though
current in vivo visualization techniques allow one to estimate the frequency with which certain cells contact
others, this data was not found for the cell types represented in the LP. Equation 7 determines the number
of sublocations in Location y, sublocy, necessary for a single cell i to contact r cells in state s in one cycle,
where k; is the number of individuals in the state s, and €; is the number of sublocations individual i visits
in one cycle. As more imaging data for the LP in inflammatory conditions becomes available and contact
frequencies observed, the simulated contact frequency can be systematically set by solving this equation.
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Figure 12: Dynamics of cell populations over a period of 75 days with only commensal bacteria in the lumen and no pathogen present. The x-axis is
labelled in time units of 6 hours.
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4. SIMULATION OUTPUT AND APPLICATION

ENISI allows users to test hypotheses and identify pathways to tissue-level phenomena by specifying
conditions in the in silico mucosal environment and observing resulting effects. Simulations with ENISI
provide visual outputs in two formats; i) a plot of the total number of individuals in each state in each
location over time and ii) a report of the number of individuals in each state that interacts with an individual
in a user-specified state s; € S and induce the state change s; — s; over user-specified time periods during
the simulation. These counts may then be represented in a number of graphical formats.

Here we demonstrate an application of ENISI by simulating a typical inflammatory response to bacteria
of the B. hyodysenteriae , an experimental model for chronic immunopathological colon inflammation. We
then turn to examples of simulation output to identify a key pathway by which chronic inflammation persists
and epithelial cell damage occurs following B. hyododysenteriae elimination.

4.1. B. hyodysenteriae induced colitis: calibration and model validation. B. hyodysenteriae infection is
characterized by severe, transient dysentery in which epithelial lining is damaged and bacteria is detected
in the LP resulting in fever and bloody diarrhea. These symptoms last for for 1week [14] followed by
low-level persistence of inflammatory factors and continued epithelial damage even after pathogen has been
eliminated.

We seek to identify pathways that lead to two different health outcomes following infection: i) com-
plete recovery: All pathogen is removed, there is no bacteria in the LP and all epithelial cells are alive
after pathogen elimination and the number of immune cells in a state corresponding to an inflammatory
phenotype is below a threshold x. In other words, a configuration in which K, , pf, ». pEcell Edead) = 0 and

K[tT hM1,eDC,eDCL] <> where 17 jeqq s the time at which the last cell enters the Bf _dead state and t > g geqa-
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Figure 13: Dynamics of cell populations over a period of 75 days following infection with B. hyodysenteriae. The x-axis is labelled in time units of 6
hours.
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Figure 14: Number of of damaged epithelial cells and commensal bacteria in the LP over a period of 75 days following infection with B. hyodysenteriae.
The x-axis is labelled in time units of 6 hours.

ii) Chronic inflammation: A configuration in which KfB LP pEcell, Edead) > 1 and K[tTh,Ml,eDC,eDCL] > x, where
x=1.

First, we demonstrated that the system behaves as expected in the absence of pathogen. Figure 12 shows
results from a simulation of a healthy, pathogen-free mucosa over 75 days following population of the lumen
by commensal bacteria. As is expected to occur in a healthy steady-state system [21, 18], there is immune
activation by commensal bacteria, shown by elevated &;pc (Figure 12A) and Kizy., (Figure 12B), however
there is no inflammatory response allowing all epithelial cells to remain in a healthy EC state (Figure 12C).
With no epithelial damage, commensal bacteria remain in the B_lumen state with no invasion in to the LP
(Figure 12D) and macrophages remain unstimulated (Figure 12E).

To represent B. hyodysenteriae we assigned values to parameters governing foreign bacteria state tran-
sitions and functions according to observations of interactions between bacteria of the Brachyspira genus
and immune cells reported in the literature. For example, bacteria of the Brachyspira genus has been shown
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to cause cell death and inflammatory cytokine secretion in epithelial cells upon contact [20]. Therefore,
the parameter vgp was assigned a value of 1. We then fit parameters governing adoption and transition of
inflammatory states to the early, acute stage dynamics of B. hyodysenteriae infection in pigs [14] as well
as unpublished observations by collaborators. Specifically, we compared model predictions to qualitative
measurements of immune cell levels and clinical symptoms of pigs over a period of two weeks following B.
hyodysenteriae infection.

During calibration, the parameters that needed to be changed from default values to fit qualitative exper-
imental dynamics were Vgc as well as the constants for the functions vy, and v; (Table 2). The constants
y1 and y, of functions vi» and v;, respectively, were increased incrementally by 1 until we observed the
expected dynamics of a transient M1 response in the presence of pathogen that is then overcome by the M2
population. The parameter Vgc, which can also be considered prceiipecerr» was calculated with Equation 6
such that, on average, at least 1 cell enters the pECell state when Thl and M1 are at their peak values on
day 8 post-infection with pathogen. Note that this peak time coincides with cycle 50 on the x-axis of plots
in Figure 13 as each cycle represents 6 hours.

Experimental infection was simulated by adding 30 individuals in the Bf _lumen state on days 1, 2, and
3 [14, 12]. Table 1 gives the number of individuals initially assigned to each of the states to represent an
immunologically inactive system at the time of infection. We then follow the epithelial cell, immune cell,
and bacteria populations over a period of 75 days. Here we define symptomatic dysentery as > 1 individuals
in the pEcell state and > 1 bacteria in the B_LP state.

Following infection, cell population dynamics accurately reflect those seen in experimental infections of
pigs [14, 12] (Figure 13) with three distinct phases: acute inflammation (days 1-6), decline of inflammation
(days 7-50), and the recovery/chronic phase (days 51-75).

Acute inflammation is marked by an increase in k,pc (Figure 13A) and k7;, (Figure 13B), followed by
epithelial damage (Figure 13C) that is shortly followed by bacterial invasion in to the LP (Figure 13D). At
this time macrophages are stimulated and we see kjs1 (Figure 13E) rise in conjunction with k7, (Figure 13B)
along with increased monocyte recruitment and transient reduction in M2 (Figure 13E).

As validation, the simulated infection reproduces dynamics to which parameters were not fitted. Specif-
ically, epithelial damage and bacterial invasion to the LP that are seen with in the first week of infection
last for a period of 1 week (Figure 14), the number of inflammatory T cells rise for 10 days, longer than
the clinical symptoms, and extension of the simulated infection past 2 weeks show a low level of epithelial
damage along with low level bacterial presence in the LP (Figure 14).

4.2. Mechanism of chronic inflammation. To identify the source of this continued epithelial damage we
observed the states of those neighbors that induce the transition EC — pEcell for all epithelial cells that
undergo this transition during days 1-6, days 7-50, and day 51-75 corresponding to the three phases of
infection.

The histogram in Figure 15 shows the number of individuals of each phenotype whose interaction with
an individual in the EC state results in the transition of EC — pEcell. It can be seen that at all stages of
infection, it is individuals occupying the Th state that are inducing the most epithelial damage. We then
report the states of neighbors that induce the transition memT — Th (Figure 15). In this case, it is clear that
in the initial stage of infection, ‘sampling’ eDC in the lumen plays a significant role. During the peak of
inflammation eDC in the lumen is no longer as significant and macrophages dominate as key drivers of Th
stimulation with M1 playing a significant role. However, in the chronic phase, it is individuals in the transient
state M21, an intermediate state between M2 and M1, that are solely responsible for Thl stimulation. To
further demonstrate this point, simulated infections were replicated in the absence of the ability of M1 to
induce state change in neighbors of the memT state, allowing T cell stimulation to occur only through contact
with eDC. The result is the dynamics shown in Figures 16 and 17. In this scenario there is a weaker, more
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rapidly subsiding inflammatory response as ‘sampling’ dendritic cells stimulate T cells. However, dendritic
cell activation is short lived and once the pathogen is removed eDCL is quickly removed. The reduced
K7y, during the acute inflammation phase results in less epithelial damage as well as lower inflammatory
cytokine concentrations reducing the frequency of M2 — M1 transitions allowing a tolerogenic environment
to persist.

The conclusion of this simple demonstration is that residual tissue damage occurs through Th1/Th17-
mediated cytotoxicity which is stimulated by M1 that has recently transitioned from the M2 phenotype.
Hence the presence of M1 is due to two parallel consequences of pathogen presence i) the rise of Th1/Th17
and damaged epithelial cells which leads to increase inflammatory cytokine concentration, and ii) increased
damage of epithelial layer which allows greater invasion of commensal bacteria. The implication is that
commensal bacteria, which directly induces a tolerogenic response, is indirectly responsible for maintaining
immunopathological chronic inflammation response via macrophage stimulation once the environmental
concentration of inflammatory cytokines reaches above a certain threshold.

Indeed, when simulated infection was repeated in the absence of commensal migration, 8, = 0, chronic
inflammation and epithelial damage is not seen following elimination of B. hyodysenteriae (not shown).
This is despite the fact that foreign bacteria is still able to invade the LP.

5. RELEVANCE OF ENISI AND FUTURE DIRECTIONS

Aspects of the presented inflammatory and regulatory immune pathways have been represented in previ-
ous models of mucosal infection [1, 30, 5, 6] that have provided insight on mechanisms of clinical symptoms
as well as pathogen persistence. The ENISI model is unique in its scope and approach. The model incor-
porates regulatory mechanisms of both adaptive and innate immunity, multi-location migration of cells,
and cross talk between antigen presenting cells and T-cells. In addition, it is mechanism-based explicitly
representing each participating cell of the immune pathway. This facilitates mapping of model parameter
specifications and predictions to laboratory techniques that manipulate specific cell populations.

We previoulsy implemented a larger scale version of the model, encompassing these aspects, as a system
of differential equations. Simulations based on this initial version identified a relationship between the Th
and M1 concentrations in the LP and chronic epithelial damage [29]. However, differential equations (ODEs)
can only capture the dynamics of each cell population as a whole. Hence, this work identified a relationship
between M1 and Th levels and epithelial damage, but the ODE representation did not allow us to identify
the specific pathways in which T cells induce epithelial damage after being stimulated by M1 macrophages.
An additional drawback of the ODE representation is that it assumes deterministic, average behavior by
each individual cell. However, biological systems are known to act stochastically due to attributes, such as
cytokine secretion and association time with stimulating factors, that vary widely across individual cells in
a population. Additionally, the randomness introduced by cell movement leads to non-uniform distribution
across single tissue sites. Due to these assumptions of determinism and homogeneity, that are surely violated
by the system in reality, dynamics predicted by an ODE model may not accurately reflect those seen in
nature.

The ENISI model can be viewed as an extension of the interacting state machine models or agent-based
models. A key aspect of these models is a procedural and interactive (a.k.a. mechanistic, algorithmic,
executable) view of the underlying systems. In this view components of the system interact locally with other
components and the behavior of individual objects is described procedurally as a function of the internal state
and the local interactions. This agent-based approach allows incorporation of spatial effects and randomness
of cell-cell and cell-bacteria contact. In the case of colonic inflammation spawned by a small number of
pathogen, such randomness is believed to significantly affect the outcome of the system and, therefore, an
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Figure 15: (a) Histogram of the number of individuals in each state that interact with an epithelial cell and induce the transition EC — pEcell. (b)
Histogram of the number of individuals in each state that interact with a T cell and induce the transition memT — Th

agent-based model is an appropriate representation [4]. This also creates a foundation for encompassing
emergent properties such as bacterial strain evolution and changes in microflora demographics as the model
is elaborated and the simulator extended. However, the drawback to such methods is that they are often not
scalable due to limitations of computation power.

ENISI is implemented using an algorithm that is an extension of that used to simulate epidemic spread
across large social networks [3]. The ENISI model was implemented on this software platform because
the algorithm is known to scale to large numbers approaching those found in the true system. Scalability
is highly relevant when seeking to reproduce emergent tissue-level phenomena by simulating individual
cell interactions. Larger scale models are necessary as the purpose of immune simulators is to reproduce
dynamics in a true in vivo system where immune cell concentrations can reach 108 /mL [10]. It may not be
sufficient to simulate the dynamics of a small sample and extrapolate results to the entire organ. To do so is
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Figure 16: Dynamics of cell populations over a period of 75 days following infection with B. hyododysenteriae without T cell stimulation by M1. The
x-axis is labelled in time units of 6 hours.
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Figure 17: Number of of damaged epithelial cells and commensal bacteria in the LP over a period of 75 days following infection with B. hyododysenteriae
with out stimulation of T cells by M1. The x-axis is labelled in time units of 6 hours.

to ignore non-linear and complex nature of the cell interactions and dynamics and make the assumption of
uniform mixing which defeats the purpose of an agent-based approach.

There are various general, agent-based biological simulator tools publicly available including Rhapsody
[7, 28], NFSim [25], and that developed by [27] that translate graphical models in to executable code to
run simulations. These simulators place an emphasis on rules governing cell-cell contacts and signaling
interactions allowing one to enter complicated functions for these mechanisms. They, therefore, provide
the useful capability of incorporating complex mathematical models for receptor-ligand interactions and
phenotype differentiation in to cell contact networks. However, the scalability of these implementation
algorithms in term of system complexity and the number of individuals in a network is unclear. For example,
Rhapsody has been shown to simulate up to 10* individuals efficiently [7, 28] .

ENISI is a unique contribution to the field of immunological tools as an agent-based model of an unprece-
dented scale, simulating complex interaction and migration of 10° individuals over a simulated 3 month
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period with in 1 hour. Though it currently requires scripting to create simulation specifications, a graphical
user interface will be publicly available in September 2011 at http://www.modelingimmunity.org.

The ENISI model presented here may be implemented with other biological simulators [7, 28, 25, 27]
at a later date to provide a complementary tool with which immunologists can potentially conduct smaller
scale simulations that include more complex rules for cell-cell interactions and phenotype differentiation.

5.1. Future steps. ENISI is an evolving in silico system. It is currently being extended to include distal
lymphoid tissues, as well as automata to represent specific bacterial species such as Helicobacter pylori and
Escherichia coli. In addition T cell populations will be further refined in to separate Th1 and Th17 types.

6. APPENDIX A: SIMULATION FILES AND SPECIFICATIONS

All individuals that will be present throughout the simulation must be declared in the population file
where they are assigned a unique identifier and an initial state. Locations must be declared in the location
files where they are given unique identifiers and divided in to sublocations. Movement of each declared
individual among the declared locations is then specified in the schedule files.

Simulation specifications are set by the configuration file, the interaction manifestation, and the sce-
nario. The configuration file sets the length of the simulation, which state transitions are multicontact-
dependent (discussed below), and points to all input and output files. Each automaton is encoded as a set
of probabilistic times transition systems (PTTSs) in the manifestation files, which calculate whether an in-
teraction results in a state transition and the path of state transitions. The scenario specifies state-dependent
schedule assignment and state transition conditions that can override the transition pathway encoded in the
manifestation. This is done in the form of interventions that may be implemented throughout the simula-
tion.

In the current code, time specifications correspond to a single cycle of the ENISI algorithm which is 24
simulation hours (86400 simulation seconds). With the current parameter set in ENISI, each cycle represents
6 real world hours.

6.1. Input Files.

(1) Population file: cells.txt
Cells.txt specifies the complete population of cells in the following format:
< Cellld > < location > < ActiveState > < BirthDeathState > < RegState > < InflammState >
< Type >
It lists each individual (< Cellld >) along with their initial location (< location >), and their ini-
tial states in each of the four manifestations; activation.mnf (< ActiveState >), birth_death.mnf
(< BirthDeathState >), Regulatory.mnf (< RegState >), and Inflamm.mnf (< InflammState >).
Manifestations are explained below. The < T'ype > column is not relevant and is simply filled with
a ‘1’ for each individual.

(2) Location files: Default.cfg sites.txt, sublocation.txt
Each tissue site, or Location, corresponds to a LOCATION_TYPE. Each LOCATION_TYPE is
composed of multiple sublocations that may be are further divided in to compartments. The con-
figuration file (Default.cfg) defines each LOCATION_TYPE. sites.txt defines the sublocations, and
sublocation.txt defines the compartments. Each is described here:

(a) Default.cfg: The number of sublocations for each LOCATION_TYPE and their corresponding
identifiers is set in the configuration file with the following syntax:
LOCATION_TYPE_RANGE_1 1 5000
LOCATION_TYPE_RANGE_2 5001 6000
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LOCATION_TYPE_RANGE_3 6001 16000
LOCATION_TYPE_RANGE_4 16001 16110
LOCATION_TYPE_RANGE.5 16111 16111
LOCATION_TYPE_RANGE_6 16112 16112
LOCATION_TYPE_RANGE_7 16113 16113
LOCATION_TYPE_RANGE_8 16114 16114
LOCATION_TYPE_RANGE.9 16115 16115
LOCATION_TYPE_RANGE_10 16116 16116
LOCATION_TYPE_RANGE_11 16117 16117

In this version there are 11 Locations. LOCATION_TYPEI is the LP, LOCATION_TYPE2
is the LN and LOCATION_TYPE4 is the EB. All others are currently not occupied by cells and
are simply place holders for tissue sites that may be added in the future. These are arbitrarily
assigned one sublocation. In this example, the LP, LOCATION_TYPE], is composed of sublo-
cations 1 through 5000 and the LN, LOCATION_TYPE?2, is sublocations 5001 through 6000.
There are a total of 16117 sublocations that cells may occupy.

(b) sites.txt: This file lists all the sublocations in the simulation in the following format:
< siteld > < typel >
The < siteld > column simply lists all sublocation identifiers, 1 through 16117. The< typel >
column is irrelevant and, at this point, is filled with the arbitrary number ‘1°.

(c) sublocation.txt: In the case that one wishes to further divide sublocations in to compartments,
this is done in sublocations.txt. This file specifies, for each LOCATION_TYPE (< type >),
the range of compartments, specified by < start_id > and < end_id >, for each sublocation in
LOCATION_TYPE< type >. This is done in the following format:
< type > < start_id > < name > < end_id >
The < name > column is not relevant and may be any arbitrary, alpanumeric label. One range
is specified for each LOCATION_TYPE and all sublocations will be divided in to the same
number of compartments. Only individuals in the same compartment are considered in contact.

(3) Schedule files: Located in the directory Schedules/
Each schedule file specifies the movement of each individual with in one simulation cycle in the
following format:
< Cellld > < Location > < SubLocation > < StartTime > < EndTime > 1
Example:
i-x-x 072001
i-x -x 7201 14400 1
i-x -x 14401 21600 1
i-x -x 21601 28800 1
i -x -x 28801 36000 1
i -x -x 36001 43200 1
i -x -x 43201 50400 1
i-x -x 50401 57600 1
i-x -x 57601 64800 1
i-x -x 64801 72000 1
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i-x -x 72001 79200 1
i-x -x 79201 86400 1

For each individual ¢; it lists the individual identifier (< Cellld >) and each location (< Location >

and < SubLocation >) that ¢; visits during the cycle as well as the amount of time spent in each
sublocation, StartTime to EndTime, in simulation seconds. In the above example, —x in the
< Location > and < SubLocation > columns specifies a randomly chosen subocation of LOCA-
TION_TYPEx and a randomly chosen compartment with in that sublocation from the range specified
in the sublocations.txt file. Hence, individual ¢; occupies a different sublocation of Location x every
7200 simulation seconds over a single cycle corresponding to 24 simulation hours (86400 simulation
seconds).
Manifestation files: As described in section 3, a cell ¢; is in contact with a neighbor c¢; when
they are in the same sublocation. Each individual that interacts with another will progress through
a series of states. The interaction manifestation calculates whether c; interacts with c; and, if
it does, whether ¢; will transition states from its current state s; to the next state of the automa-
ton. The manifestations encode the path of state transitions for each automaton as a probabilistic
timed transition system (PTTS), an extension of the finite state machine (FSM), with the follow-
ing components: (1) Each state (< state >) is occupied for a period of time (< DwellTime >).
(2) Each state is assigned an InferactorState. This value determines to which interactor set, I, the
state belongs and, subsequently, with which other states it will interact. To clarify, let the state
of individual ¢; be s;. For each state s there is an interactor set I; of states such that if a contact
c; of individual ¢; is in a state s; € I;;, then ¢; will interact with ¢; and probabilistically transition
states. (3) Each state has an < Infectiousness > and < Susceptibility > value between 0 and 1. The
< Susceptibility > of a state determines how likely the individual ¢; is to interact with a neighbor
cjif s; € Iy;. The < Infectiousness > of s; determines how likely c; is to transition if s; € Isj. The
< TransitionType > value of a state indicates whether transition to the next state is time-dependent
or contac-dependent. Specifically, < TransitionType >= 0 indicates transition from the state to the
nextstate is time-dependent and < TransitionType >= —1 indicates it is contact-dependent. Once
it is determined that a state transition will occur based on these properties of s;, ¢; will transition to
the next state (< next_state >) with a specified probability (< probability >). This is encoded in
the manifestation files in the following syntax:

DISEASE _STATE <state> <DwellTime> <InteractorSet> 0 <Infectiousness> <Susceptibility>

<TransitionType>
DISEASE_LINK “Untreated” < probability > < next_state >

With in one manifestation an individual’s state may transition along multiple paths distinguished
by probabilities p; ... p, assigned to each of n paths such that }' | p; = 1. A simple example is
shown in Figure 18A that shows a sample automaton of individual i. In this example, i undergoes
the transition memT — T hProlif when it interacts with individuals that occupy the eDC, eDCL, or
M1 state and is activated with a probability of air. An individual with whom i interacts is termed
its interactor. Alternatively, i is not activated with a probability of 1 — a7 and remains in the
memT state. After a dwell time of 6 hours, the individual undergoes the transition ThProlif — Th.
After a dwell time of ur, it undergoes the transition 7h — memT with a probability of vy and
Th — ThSource with a probability of 1 — v7.

When multiple paths are not distinguished by a probability but rather by the state of the interactor,
as is the case in Figure 18B, then that state is not reachable in the same manifestation. In this
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example, i will transition from a memT state to either a ThProlif or an iTregProlif state depending
on the state of its interactor. In the case that the memT contacts an individual j whose state s; €
[eDC,eDCL,orM1] then it enters ThProlif, however, if s; € [tDC,tDCL,M2], then i takes a different
path to iTregProlif. This requires a secondary manifestation in which the alternate interaction
(memT — iTreg) is calculated and then used to transition the state in the main manifestation as
demonstrated in Figure 18C. This synchronization of multiple manifestation for the same automaton
is controlled through the scenario.

ThSource
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Figure 18: Ovals are states of the automaton and pink highlights the initial state. Dashed arrows represent contact-dependent transitions, solid arrows
represent time-dependent transitions, and dotted arrows point from states in one manifestation to the state which is subsequently adopted in the other.
A. One manifestation that composes the T cell automaton. This contains 2 pathways leaving from memT. Which path is taken is probabilistic. B. An
extension in which an additional pathway may be taken from the memT state and which path is taken is now determined by the state of contacts C. Example
of a separation of a single automaton in to two manifestations. Contact with individuals with a state from the set [tDC,tDCL,M?2] induce transition to
iTreg in the secondary manifestation, which causes the main manifestation to adopt the i7regProlif state.

(5) Scenario file: Default.scn In the scenario one specifies i) the day on which bacterial doses are
given, ii) schedule assignment conditions, and iii) state transition conditions that can override the
transition pathway encoded in the manifestation. This is done in the form of interventions that may
be implemented throughout the simulation. The scenario file uses a specific syntax shown below:
bnf

The scenario is a series of triggers and actions. A trigger is a conditional statement that is applied
to each interactor individually. It can be a function of the individual’s state, the simulation ‘day’,
or cycle, or an attribute assigned to an individual such as ‘age’. The grammar for the scenario file
language can be seen in Figure 19. Each line of the scenario is read for each person at the begining
of each cycle.

If a trigger evaluates to true, one or more actions are executed. These actions can modify the
interactor by changing its attributes or schedule, or explicitly transitioning its state in one of the
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(scenario) — version (maojr).(minor)
({intervention) | (trigger) | (comment))*;
(intervention) — intervention (intervention_name) (action)™;
(trigger) — trigger [repeatable] [single] [with prob = (real)] (condition) (action) |
state (on entry | on exit) (state_name) [with prob = (real)] (condition) (action);
(action) —
apply (intervention_name) [with prob= ((real) | (real_var)) ] |
treat (fsm_name) (treatment_name) |
untreat (fsm_name) (treatment_name) |
schedule (sched_name) (priority) |
unschedule (priority) |
infect (fsm_name) |
transition (fsm_name)[:(state_name)] [keeptime | normal] |
remove |
endsim |
message (string) |
set ({var_name) | person.(person_attribute)) (= (integer) | ++ | —— | += (integer) | -=
(integer)) |
add ((int_var) | (integer) to (set_name) |
delete ({int_var) | (integer) from (set_name);
(condition) — (or_expr);
(or_expr) — (and_expr) | or (and_expr);
(and_expr) — (not_expt) | and (not_expry);
(not_expt) — not (or_expr) | ( (or_expr) ) | (base_expr);
(base_expr) — (binary_cond) | (set_cond) | true | false;
(binary_cond) —
(int_var) (binary_op) (integer) |
(real_var) (binary_op) (real) |
(string_var) (binary_op) (string);
(set_cond) — (set_name) intersect (set_name) is not null |
(set_name) contains ({int_var) | (integer));
(binary_op) — < | <=|=|!=|>=]|>;
(var) — (int_var) | (real_var) | (string_var);
(int_var) —
day |
time |
person.id |
person.removed |
person. (person_attribute) |
(fsm_name).infected |
(fsm_name).(fsm_attribute) |
(var_name);
(real_var) — (fsm_name).infectivity | (fsm_name).susceptibility;
(string_var) — (fsm_name).state;
(XXX name) — [a-zA-Z0-9_]";
(string) — “[a-2zA-Z0-9_]";
(comment) — #.* (EOL);

Figure 19: Grammar of EpiSimdemics scenario file.
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PTTSs. Actions can also modify scenario variables. A trigger can only directly specify a single
action to execute. Multiple actions can be combined into an intervention, which can be executed
using the apply action. Interventions are also necessary to probabilistically execute one or more
actions, as described below.

(a)

(b)

()

(d)

Triggers: A trigger condition is series of comparisons linked by boolean operators. Values
that can be compared included: an interactor’s demographics and attributes, attributes of the
current state of any of the PTTSs, and the value of scenario variables, described in more detail
below.
There are two types of triggers. The first is evaluated at the start of each simulation day by
every interactor, and each after each transition of a PTTS by the transitioning interactor. The
second is evaluated whenever a particular PTTS state is entered, or alternatively, exited. A
trigger may have one or more modifiers, single, repeatable, and probabilistic evaluation.
repeatable: Normally, a trigger can only succeed once per interactor. A repeatable trigger
can succeed multiple times.
single: Normally, a trigger is evaluated independently against each interactor. A single
trigger is evaluated only once at the start of each day, and is independent of any interactor.
A single trigger can also be repeatable and/or probabilistic.
with prob: When a probability is specified, it is added as another check in the condition.
If the condition evaluates as true, a Bernoulli trial is performed. If it succeeds, the action
is executed as normal. If it fails, the trigger is reevaluated at the next opportunity.
Scenario Variables: Scenario variables can be written (assigned, incremented, and decre-
mented) and read in the scenario file. All scenario variables are initialized to zero (scalar)
or empty (set). The read value is always the value at the end of the previous simulation day.
Any writes are accumulated locally, and synchronized among processors at the end of each
simulated day (cycle). Currently, scenario variables are limited to integer values.
There are two types of variables: scalar and sets. Scalar variables hold a single integer value
while sets can hold multiple values. Various set operations are supported such as interscetion
and union, as well as the adding and removing of individual values.
There are two read-only scenario variables: day and time. These variables hold the simulation
day and simulation time at which the action was executed.
Interactor and PTTS Attributes: Each person has a set of attributes and demographics. De-
mographics are input to the simulation at initialization, while attributes are initialized to 0.
Otherwise, they are treated identically and both are considered attributes. Each PTTS has a set
of attribute names associated with it, with unique values in each state. The attribute values are
fixed for the duration of the simulation. Both person and PTTS attributes can be used in trigger
condition expressions. The value of the PTTS state attribute contains the full name of the state,
in the form “PTTS name:manifestation name:state name”, where the PTTS name comes from
the configuration file, while the other two parts come from the PTTS input file. In this way, an
interactor can have multiple copies of the same PTTS that will be treated independently.
Actions: Actions that can be performed by a trigger are detailed below.
apply: Apply an intervention, which is a group of one or more actions from this list. An
intervention can be applied probabilisticly, in a way similar to triggers. The difference
is that if the Bernoulli trial fails when applying an intervention, the trigger itself is still
considered to have succeeded, and the trigger will not be evaluated again for this inter-
actor (unless it is repeatable). In this way, a distinction can be made between a decision
that is repeatedly evaluated, such as “On each day that a person is symptomatic, Go to
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the doctor with a 30% probability ”, versus one that should only be evaluated once “30%
of the people who are symptomatic will be diagnosed.”
treat, untreat: Add or remove a label to the set of labels to be considered when choosing
a set of edges to use for a transition in a PTTS. The set of labels must match the edge
labels exactly for an edge to be considered. We are considering relaxing this restriction
in the future.
schedule, unschedule: Add or remove a schedule from an interactors priority list. When
building a daily schedule, the schedule type with the highest priority is used.
infect, transition: Cause a forced transition in a PTTS, as opposed to a timed transition.
Infect is the same as a normal transition, with the added check that the PTTS is currently
in an uninfected state. When a PTTS in forcibly transitioned, the new state can either
be explicitly specified, or chosen as part of the normal transition process. The normal
transition process is to selecte from the weighted edges that are part of the transition set
with the correct label. The dwell time in the new state can be one of four possibilities:
normal: Pick the dwell time from the distribution in the new state. This is the default.
keeptime: Keep the transition time from the old state. The transition time from this
state will be the same as form the old state, had the forced transition not occurred.
fixed: Pick the dwell time from the distribution in the new state, and subtract the
amount of time already spent in the old state. If this results in a dwell time that
is equal to or less than zero, perform another transition according to the normal
transition rules (not yet implemented).
proportional: Pick the dwell time from the distribution in the new state, but reduce it
by the percentage of the dwell time spent in the old state. So if the old dwell time
was 48 hours, and the individual has already spent 36 hours in that state (75% of
the total), and the new dwell time was 72 hours, the value of 18 hours is used (not
yet implemented).
remove: Remove an interactor from the simulation. No further interactions will be eval-
uated for this interactor. This action takes effect at the begining of the next simulation
day.
endsim: End the simulation early. Useful for dynamically evaluating stopping criteria.
This action takes effect at the begining of the next simulation day. (currently broken and
should not be used).
message: Write a message to the log file, tagged with the simulation time the action was
taken, and the associated interactor.
set: Alter the value of a scalar scenario variable or interactor attribute. The value read from
a scenario variable is always the value at the end of the previous simulation day. Any
writes are accumulated locally, and synchronized among processors at the end of each
simulated day.
add, delete: Modify the contents of a set scenario variable. Values added to or deleted
from a set can either be constants, or the value of other scalar scenario variables.

6.2. Automatically generated output files. Upon running a simulation, certain outputs will be generated
automatically in the directory Outfiles/ by each processor. Each output file is described below.

(1) disease.txt.A: This file lists each time an individual changes states, the state which it enters, and the
state which it exited in the following format:
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< cell_id > < time > < state_entered > < state_exited >

time is given in simulation seconds. The numbers representing each state is given at the top of
the document.

dendogram.txt.A: This file lists each time an individual changes states, the individual’s id (<
person >), the time at which the transition occurred (< time >), the manifestation dictating the
transition function (< fsm >), the state of the individual at the time of change (< infecteeState >),
the id of the contact that induced the change (< InfectedBy >), the state of the contact that induced
the change (InfecteeState), the location where the transition occured (< actloc >), as well as infor-
mation about the location that is not currently relevant (< actsubloc > < acttype > < rooomtype >
). The columns are labeled as follows:

< person > < homeloc > < time > < fsm > < infecteeState > < infectedBy > < infectorState >
< actloc > < actsubloc > < acttype > < rooomtype >

The numbers representing states correspond to those in the disease.txt.A file and the numbers rep-
resenting the different fsm’s are given at the top of the document.

stat.txt: The stat file lists, for each day (< day >), the number of individuals (< count >) in a
specific state (< value >) in each Location (< locationType >) in the following format:
<day > < locationType > < value > < count >

The corresponding value for each state is given at the top the disease.txt.A file. A stat file is
generated for each processor, hence each stat.txt.* file contains count for each state in a location
as calculated over the sublocations on a single processor. As sublocations for a single Location are
distributed among the processor the total count in a Location is a sum over all the stat.txt.* files
generated.

Trans files: A described in section 3, certain individuals will transition states according to the
multicontact-dependent function (Equation 4) depending on their current state. Different multicontact-
dependent functions can be created in the configuration file (discussed below) to be applied to dif-
ferent sets of ‘target’ states. The Trans files report information about each multicontact-dependent
transition that occurs during the simulation.

(a) Trans.txt: This file reports, on each day (< day >), for each specified function (< name >),
the number of individuals in states that induce the transition (< activators >), the number of
individuals that inhibit the transition (< inhibitors >), as well as the number of individuals in
one of the target states (< targets >) and whether the transition occurred (< infected >). The
columns are labelled as follows:
<day> <name > < start > < end > < activators > < inhibitors > < targets > < infected >

(b) Transdetail.txt: This file reports the same information as Trans.txt as well as the unique iden-
tifier of each individual in the target state < id > and the calculated probability of infection
given the count of activators and inhibitors (< probability >):
<day > < name > < start > < end > < id > < activator > < inhibitor > < target >
< prob > < infected >
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