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Abstract—Stochasticity is part of the nature of many
biological processes and an important aspect in model-
ing and simulations of computational biology. Gillespie’s
algorithm was developed for modeling stochasticity of
chemical reactions and has been broadly applied to stochas-
tic modeling in computational biology. The Gillespie’s
algorithm accounts for the particle effect in chemical
reactions. However, many biological processes including
cellular and molecular immunological mechanisms have
many other sources of stochasticity such as cell movement,
ligand binding, or unaccounted variation in experimental
settings. In this paper, we propose stochastic differen-
tial equations (SDE) being used as a generic stochastic
modeling technique for systems immunology. SDE has
been widely used in statistics and economics areas; but
only a few isolated studies in computational biology are
found using SDE to model stochastic behaviors of cells
and molecules. In addition, to the best of our knowledge,
there is no user-friendly SDE-based modeling tool available
for computational biologists. This paper presents ENISI
SDE, a web-based user-friendly stochastic modeling tool for
computational biologists. This work provides three major
contributions: (1) we discuss SDE and propose it as a
generic approach for stochastic modeling in computational
biology; (2) we develop ENISI SDE, a web-based user-
friendly SDE modeling tool that only requires little extra
effort beyond regular ODE-based modeling; (3) we use
the model SDE modeling tool to study stochastic sources
of cell heterogeneity in the context of a CD4+ T Cell
differentiation process. The case study clearly shows the
effectiveness of SDE as a stochastic modeling approach in
biology in general and immunology in particular and the
power of the SDE modeling tool we developed.

I. INTRODUCTION

Results from biological experiments often vary signif-
icantly due to certain degree of randomness associated
with them. For example, the same in vivo experiment
conducted under the exactly same conditions in distinct
animal can have significantly different results. On the
one hand, experimentalists can better control the experi-
mental settings to reduce the variation; on the other hand,
stochasticity is intrinsic to many biological processes

including cell movement, cell heterogeneity and ligand
binding and thus impossible to eliminate. Indeed in some
cases, stochasticity is benign and essential. For example,
Schneidman et. al. [31] showed that the stochasticity of
neuron ion channel may be critical in determining the
reliability and precision of spike timing.

Modeling and simulation techniques have been widely
adopted in computational biology. Biological systems are
highly complex, nonhomegeneous, have many feedback
loops and modeling and simulations can be of great value
in helping to understand biological processes:

• Network models can synthesize and represent com-
plex existing knowledge of biological systems.

• Effective reasoning and knowledge discovery can
be achieved through applying advanced network
inference algorithms onto the models.

• Performing in silico experiments, i.e., computa-
tional simulations, based upon models can test and
refine novel hypotheses for further wet-lab experi-
ments and save significant time and cost.

The most commonly used modeling techniques are
equation-based and agent-based models. Equation-based
models represent a complex system with a set of math-
ematical equations. Common equation-based models in-
clude ODE (ordinary differential equation) and PDE
(partial differential equation) models. There are many
efficient numerical computation techniques for equation-
based models. The agent-based models use object-
oriented programming techniques to represent simulated
entities as individual agents or objects. It can simulate
more fine-tuned individual behaviors and interactions
between agents when compared with equation-based
models. Agent-based models use simple rules to model
agent individual behaviors and their interactions and can
be used to capture highly complex system behaviors.
Compared with equation-based techniques, agent based
modeling usually requires more computational resources.



Deterministic modeling techniques capture the average
group behavior very well; with the same settings a
deterministic model always gives you the same results.
To account for various stochasticities in biological pro-
cesses, stochastic modeling is increasingly becoming
a necessity. While agent-based models can incorporate
stochasticity easily by adding it into the rules, adding
stochasticity into equation-based models is generally
more challenging. An explanation for that is that by
adding stochasticity into the equations, many effective
numeric algorithms no longer work as efficiently as
in the deterministic cases. In the past decades, there
have been many deterministic equation-based models
developed in life sciences; however, there are relatively
few stochastic models.

Gillespie’s algorithm [12] and its variants [5] [29]
[4] have been developed for modeling stochasticity in
chemical reactions that are represented by ODEs. Gille-
spie’s algorithm captures the stochasticity primarily from
the particle effects of molecules or atoms in chemical
reactions. The Gillespie’s algorithm has been extensively
used in simulating many biochemical reactions such as in
metabolic pathways. However, Gillespie’s algorithm has
its disadvantages. First, it is computationally complex
and thus expensive. In fact, many models have to reduce
the scale of concentrations or the number of particles to
get the Gillespie’s algorithm to work. Second, it does
not capture stochasticity due to other effects.

For ODE-based modeling, there are many tools in-
cluding Matlab, R, COPASI [15], and others. COPASI
was developed originally for biochemical networks and
later it has been extended as a general ODE-based
modeling platform. COPASI has successfully been ap-
plied to signal transduction networks, cellular metabolic
networks, and gene regulatory networks. The targeted
users of COPASI were originally chemists and bio-
chemists, although they have evolved in the last year
to include computational immunologists. As a result,
COPASI has highly usable quality interfaces and users
need no advanced mathematical knowledge to develop
models and perform simulations. In contrast, Matlab is
a platform for engineers and R for statisticians and they
are not as user-friendly as COPASI for biologists. To the
best of our knowledge, for stochastic modeling of ODE
models, most of tools include only Gillespie’s algorithm
and its variants.

Stochastic differential equations (SDE) for stochastic
modeling has been widely used in economics and statis-
tics [17]. However, only a few studies [22] [23] [7] [30]
[24] applied SDE into computational biology modeling.
For those studies, the models are relatively small in scale

with only a few ODEs and some of them used Matlab
to directly build the SDEs. We have found one SDE
package in Matlab [32] and one in R [17]; however,
they are not user-friendly, specially when biologists with
limited computational training want to use them.

In this study, we have developed ENISI SDE, a web-
based user-friendly SDE modeling tool. In the front
end, a web browser takes an ODE model file and the
stochasticity settings and sends them to the backend
server. The backend server runs COPASI, an open source
platform developed at Virginia Bioinformatics Institute,
and R, a widely accepted computational platform, to
perform the SDE simulations. The results are sent back
to the web browser through AJAX APIs. To our best
knowledge, this tool is the first SDE modeling tool
designed for biological applications with the underlying
mathematics transparent to users. We have applied this
tool to a CD4+ T Cell differentiation model with 93
species and 46 reactions [6]. This tool requires a minimal
effort beyond what is required for ODE-based modeling.
The biologists can quickly understand and play with the
SDE models using this new tool. User-friendly SDEs
represent powerful generic stochastic modeling tech-
niques for computational biology. Users are encouraged
to use our web-based tool to develop SDE models and
perform simulations.

II. RELATED WORK

Mathematical modeling and simulations have a long
history in computational biology [13] [9] [25] [8] [34].
Especially since the introduction of systems biology [19]
[16], systems-level modeling techniques [3] [18] are
becoming more important in analyzing data, discovering
new knowledge, and performing in silico experiments in
a time and cost saving manner.

ODE-based and agent-based [10] are two of the most
popular types of computational modeling used by biol-
ogists. Novak et. al. used ODEs to model cell division
[26] and DNA replication [27] in fission yeast. Holcombe
et. al. presented an agent-based modeling tool called
FLAME [14] in modeling complex biological systems.
Adra et. al. developed a multi-scale modeling of human
epidermis system [1].

For stochastic modeling of ODE-based models, the
Gillespie’s algorithm [11] [12] has been widely used.
For example, Jong et. al. [8] discussed various model-
ing techniques used for gene regulatory networks and
focused primarily on Gillespie’s algorithm in the section
of stochastic modeling. However, Gillespie’s algorithm
is computationally complex even though there have been
several variants [5] [29] [4] [20] [21]. The Gillespie’s
algorithm of stochastic modeling has several advantages:
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• It has solid theoretic foundation and has been used
successfully for modeling chemical reactions.

• Many ODE-based modeling tools provide Gille-
spie’s algorithm.

• It requires little extra effort in addition to ODE-
based modeling.

However, the Gillespie’s algorithm primarily captures
the stochasticity stemming from particle effects of chem-
ical reactions. In contrast, SDE as a stochastic modeling
technique has been widely studied and applied in statis-
tics and business [17]. There have been a few isolated
SDE models that have been developed for computational
biology [22] [23] [7] [30] [24] . To the best of our knowl-
edge, there is no user-friendly tool available that provides
SDE modeling capability. For example, Saarinen [30]
developed their own private Matlab-based SDE modeling
module. Developing large-scale ODE-based models is
difficult in Matlab and it is even more challenging for
SDE modeling since the users need to write their own
mathematical equations in Matlab. This is not feasible for
biologists with limited mathematical and computational
training.

III. STOCHASTIC MODELING WITH SDE

A. SDE and the Stochastic Process

A stochastic differential equation can be divided into
two parts: regular ODE and noise as shown in equation
1, where Xt as a variable of time t is a vector of the
concentrations of species. Not considering noise, G(Xt)
is the changing rate or derivative of Xt in terms of time.

dXt = G(Xt) ∗ dt+ dWt (1)

The noise part, Wt is a vector of stochastic processes.
In the rest of this section, we focus on a one dimensional
version of equation 1, i. e., dxt = g(Xt) ∗ dt+ dwt for
a detailed theoretical analysis. We assume changing rate
of xt depends on the vector Xt through reactions and
its own stochastic noise wt.

The wt is a stochastic process with the following
properties:

1) The mean of wt − ws is 0 where t and s are two
arbitrary time points.

2) The variance of wt − ws is (t− s)σ2, where σ is
a constant.

3) The two random variables (wt2−wt1) and (wt4−
wt3) are independent for any four time points that
satisfy t1 < t2 ≤ t3 < t4.

B. Numeric Algorithm

Theorem 1: If dwt equals nt ∗
√
dt, where nt is

a random variable of mean 0 and variance σ2, i. e.,
standard deviation of σ, and nt is independent of ns
if t 6= s, then wt satisfy the above three properties.

Proof: According to the definition, wt−ws =
t∫
s

dw,

where dw = limδt→0(wt+δt − wt). The mean(dw)
is mean(nt) ∗

√
dt = 0 and variance(dw) is

variance(nt) ∗ dt = σ2 ∗ dt. For independent random
variables, the mean of the sum of random variables is
the sum of the means of individual random variable.

Therefore, mean(wt − ws) =
t∫
s

mean(dw) = 0. This

proves the property 1. The variance of the sum of
independent random variables is the sum of the variances
of individual random variable. Therefore, variance(wt−

ws) =
t∫
s

variance(dw) =
t∫
s

σ2dt = (t − s)σ2. This

proves the property 2. Since all dwt are independent,
wt2 − wt1 and wt4 − wt3 are independent for any four
time points that satisfy t1 < t2 ≤ t3 < t4 since the
sums of two exclusive groups of independent variables
are independent. This proves property 3.

Theorem 1 provides the theoretical foundation for
our numerical algorithm. Our numerical algorithm for
SDE is divided into two parts. In each step of time
progress dt, part one is the LSODA (Livermore Solver of
Ordinary Differential Equations) algorithm [28] for the
ODE integration part g(Xt)dt, and part two is adding the
stochastic variations dwt = nt

√
dt. The random variable

nt is of mean 0 and variance σ2.

C. Discussions on the Stochasticity

Two items remain for precisely defining the noise
random variable nt: the noise/distribution type and the
standard deviation σ. The stochastic noise nt could be
white, brownian, or others. The white noise follows uni-
form distribution where the probability density function
(pdf) is const within the distribution range. The one
dimensional pdf is shown in equation 2 where a and
b are low and high bounds. Setting b = −a =

√
3σ, the

mean of nt is 0, and the variance is σ2.

f(n) =

{
1/(b− a) if a ≤ n ≤ b
0 if n < a or n >b (2)

The Brownian noise follows the Gaussian distribution
and the one-dimensional PDF is shown in equation 3
where µ is the mean and σ is the standard deviation. We
just need to set the µ to 0 for nt.
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Fig. 1. The web user interface of the SDE modeling tool.

f(n) =
1

σ
√
2π
e

1
2 (
n−µ
σ )2 (3)

To specify the standard deviation σ, we assume it is
proportional to the corresponding species’ concentration
x, i.e., σ = θx where θ is a constant. In each nu-
merical step, the σ can be chosen to be proportional
to the species’ initial concentration x0 or the dynamic
concentration xt. We call the former ”fixed” and the
latter ”relative” as the σ is fixed during the simulation if
choosing to be proportional to the initial concentration.
Generally, θ is a number between 0 and 1. In rare cases
of the Brownian noises, the noise could be a very large
negative number and the concentration could be negative
after adding the noise. For practical reasons, we do
not allow negative concentrations of species and set the
concentration to be 0 when that happens.

According to the central limit theory, when the simu-
lation interval is small and the number of steps is large,
it does not make much difference whether the noise is
white or brownian, as the sum of the large number of
uniform random variables also approximates a Gaussian
distribution.

IV. ENISI SDE, A WEB-BASED MODELING TOOL

A. Web-Based Front End

Figure 1 shows a partial snapshot of the web user
interface we developed for SDE modeling. This is the
front end of the tool and is used for capturing user inputs
to the model and presenting the results. Users only need
a web browser to use the SDE modeling tool. Making
the interface web-based largely eliminates hardware and
operating system dependencies that force many tools to
provide multiple versions for various systems such as
Linux or Windows. Our tool is also tablet and smart-
phone friendly since it requires only a web browser.

In terms of the implementation, the front end is
implemented with HTML and JavaScripts. HTML is for
the static part and JavaScripts for the dynamic part. The
jQuery library and AJAX apis are used in JavaScripts.
AJAX technology allows the user interface to wait for
the backend computations and present the results to the
specific section of the web page without reloading the
whole page.

The users need to provide a valid ODE model file in
XML-based COPASI format. For ODE model develop-
ment, please refers to the COPASI user manual for more
details. In addition t the ODE model file, users also need
to provide the following SDE specific parameters:
• Providing a random seed. When users provide the

random seed, the results can be reproducible. If
leaving the UseRandomSeed as default 0/disabled,
the system will automatically generate random seed
based upon system time.

• Select noise type whether it is white or brownian
as explained earlier. The default is white.

• Select whether the noise is relative or fixed ex-
plained earlier. The default is relative.

• Specify the node name and the corresponding pro-
portion or θ. For example, specifying node A with
θ = 0.1, the σ equals 10% of the concentration of
A.

When clicking the submit button, the file and the
parameters will be send to the backend server. Once the
backend computations are completed, time course data,
figures and tables will be send back to the front end.

B. Server-Based Backend

The backend server is a Linux server where a web
server, COPASI and R have been installed. The web
server receives the front end requests and sends them
to a CGI perl script. The perl script parses the inputs
and edits the model file and feeds it to the COPASI to
perform the SDE simulations. The simulation results will
be saved into files in the tsv (Tab-separated) format. The
perl script will feed the result file to the R engine for
generating the tables and figures that are HTML ready.

The SDE algorithm first calculates the time step dt
first. Then in each step, it calls LSODA to integrate the
ODE part and also add the noise part by generating a
random value timing square root of dt. The random value
is generated according to the specified noise types, white
or Brownian, relative or fixed.

C. An Illustrative Example

In the illustrative example, we will develop a simplis-
tic model with three species S (source), I (intermediate)
and D (destination), and two reactions, one from S to I
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and another from I to S. The model is [S]− > [I]− >
[D]. The three differential equations are:

d[S]
dt = −0.2[S]
d[I]
dt = 0.2[S]− 0.1[I]
d[D]
dt = 0.1[I]

(4)

where [] means the concentration. Their initial concen-
trations are [A]0 = 1.2, [B]0 = 1, and [D]0 = 0.4 and the
unit is mol/l. For simplicity, we assume ODE model has
been calibrated appropriately. Using the deterministic
LSODA algorithm, figure 2 shows the time courses of the
species concentrations. The simulated time duration is
10s and simulated in 1000 intervals, i. e., dt = 0.01s. It’s
easily seen that along time [S] decreases, [D] increases,
while [I] first increases and then decreases after reaching
a peak that is [I]3.45 = 1.20417ml/l.

Fig. 2. Time-course concentrations of the three species in ODE model.

Fig. 3. Time-course concentrations of the three species in SDE model.

Suppose A is a stochastic node, and the noise type
is white and relative, and the θ is 0.1. Now the first
ODE equation becomes d[S]

dt = −0.2[S] + n
√
dt, where

n is a uniform random variable of mean 0 and standard
deviation of σ = 0.1[S]. Figure 3 is a time course figure
of the corresponding species concentrations in the SDE
model using the SDE algorithm we implemented. As the
stochasticity is introduced into the source node [S], the
stochasticity will be propagated into the intermediate and
the destination nodes [I] and [D]. The three curves show
similar trend as in the deterministic case; but they are
stochastic and change in each simulation with different
seed of the random number generator. Especially, [S]
no longer decreases monotonically but has several local
peaks during the simulation.

[S]10s [I]10s [D]10s t[I]Peak [I]Peak

Determi 0.1624 0.9260 1.5116 3.4500 1.2042
Stoch 1 0.1574 0.8645 1.4501 3.1000 1.1382
Stoch 2 0.0841 0.7921 1.4588 2.6800 1.2201
Stoch 3 0.1401 0.9930 1.5541 4.5700 1.2349
Stoch 4 0.1200 0.8765 1.4783 2.9600 1.1592
Stoch 5 0.2703 1.0783 1.5997 5.2300 1.2854
Stoch 6 0.1551 0.9409 1.5121 3.0000 1.2042
Stoch 7 0.1518 0.9013 1.4844 2.9900 1.1711
Stoch 8 0.1130 0.8764 1.4946 2.8900 1.2066
Stoch 9 0.1606 1.0040 1.5731 4.1100 1.2680
Stoch 10 0.1395 0.9108 1.5080 3.9100 1.2087
Stoch 11 0.1582 0.9916 1.5582 3.8400 1.2449
Stoch 12 0.1713 0.9326 1.5028 4.0300 1.1779
Stoch 13 0.2009 0.9485 1.5103 4.3000 1.1834
Stoch 14 0.1506 0.8895 1.4803 3.3800 1.1636
Stoch 15 0.1096 0.8054 1.4383 2.7200 1.1580
Stoch 16 0.1352 0.9222 1.5113 3.0600 1.1883
Stoch 17 0.2580 0.9047 1.4553 2.1700 1.1340
Stoch 18 0.1306 0.8870 1.5008 3.6700 1.2041
Stoch 19 0.0659 0.7674 1.4186 2.7300 1.1391
Stoch 20 0.2195 0.9845 1.5524 3.4800 1.2536
Stoch Ave 0.1546 0.9136 1.5021 3.4410 1.1971
Stoch Std 0.0513 0.0760 0.0473 0.7560 0.0440
Std / Ave 0.3318 0.0831 0.0315 0.2197 0.0368

TABLE I
THIS TABLE SHOWS THE END CONCENTRATIONS OF THE THREE

SPECIES AND THE PEAK TIME AND VALUE OF THE INTERMEDIATE
SPECIES I OF THE DETERMINISTIC AND 20 STOCHASTIC RUNS. THE

AVERAGE AND STANDARD DEVIATION ARE ALSO PROVIDED.

We further run the SDE time course for 20 times.
Table I shows the species concentrations at the end (10s)
and also the peak time and peak value of the intermediate
node I. The average values over 20 stochastic runs are
close to the values from the deterministic run. The
standard deviation of source node concentration [S] at
the simulation end is the largest, relative to the average
value is about 33%. For [I] and [D], the corresponding
percentages are 8.3% and 3.2%, respectively. This con-
firms that this network is a single direction flow network,
from S to D through I. For the peak time, its variation is
relatively high, the standard deviation is about 22% of
the average peak time. In contrast, the peak value of [I]
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Fig. 4. Systems Biology Markup Language (SBML)-based representation of the CD4+ T cell differentiation model, representing initiation and
differentiation fates for T-helper type 1, 2, 17 and regulatory CD4+ T cells (Th1, Th2, Th17 and Treg respectively). For high resolution network
model, please refer to www.modelingimmunity.org

has smaller stochasticity.

V. A CASE STUDY: CD4+ T CELL DIFFERENTIATION

CD4+ T cells play an important role in regulating
acquired immune responses. However they can also
contribute to initiating and maintaining pathological re-
sponses such as inflammation or autoimmunity. CD4+
T cell differentiation into either effector or regulatory
phenotypes is tightly controlled by the extracellular cy-
tokine milieu, complex intracellular signaling networks
and specific profiles of transcriptional regulators. Thus,
understanding the connections in the intracellular dif-
ferentiating pathways that control CD4+ T cell homo-
geneity is key to better understanding mechanisms of
regulation and developing novel therapies for infectious
diseases, autoimmunity and inflammation.

A. CD4+ T Cell Mathematical Model

To facilitate a comprehensive representation of the dy-
namics associated with the pathways controlling CD4+
T cell differentiation and plasticity, we constructed an or-
dinary differential equation (ODE)-based computational
model, which includes 93 species, 46 reactions and
60 ODEs driving activations and inhibition pathways
(Figure 4). This mathematical model was able to reveal
novel unforeseen behaviors as computational hypotheses,

which were experimentally validated with immunolog-
ical in vivo experimentation concerning T-helper type
17 (Th17) and its pro-inflammatory properties, Treg
or FOXP3 expressing, and its plasticity triggered by
the nuclear receptor PPARγ [6]. However, by being
deterministic, this model is partially ignoring random
variations in many biological factors, such as transcrip-
tion and translation rates, and the stochastic nature of the
CD4+ T cell differentiation process. Thus, we applied
the stochastic modeling technique SDE described here
as a tool to explore and analyze how stochasticity in key
nodes of the model can explain observed trends in CD4+
T cell differentiation. Moreover, it has been described
how the Treg and Th17 phenotypes have a tight equi-
librium due to the antagonistic effect of its transcription
factors, FOXP3 and RORγt respectively [36] [35]. Thus,
SDE modeling can be used to observe how stochasticity
can modulate and regulate the steadiness between Th17
and Treg.

B. SDE Modeling Results

The function of the transcription factors RORγt
and FOXP3 is tightly regulated by upstream activators
STAT3-P and the IL-6 receptor in differentiated Th17
cells. To assess the balance between Th17 and Treg, our
CD4+ T cell computational model was induced towards
Th17 by adding external IL-6 and TGF-β. Using the reg-
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Fig. 5. SDE modeling approaches showed different predictive patters on RORγt-FOXP3 equilibrium when key nodes were stochastically
activated. (A) ODE-based time-course performed under Th17 polarizing conditions with IL-6 and TGF-β induction. Upregulation on STAT3-P
(red) and RORγt (yellow) can be observed together with the down regulation of FOXP3 (green) and a high production of IL-17 (blue). (B)
SDE-based simulation in which RORγt and FOXP3 have been added for randomness. (C) SDE-based simulation in which RORγt, FOXP3
and STAT3-P have been added for randomness showing how the production of IL-17 is heavily impaired. (D) SDE-based simulation in which
RORγt, FOXP3, STAT3-P and IL-6R (P=0.1) have been added for randomness. (E) SDE-based simulation in which RORγt, FOXP3, STAT3-P
and IL-6R (P=0.3) have been added for randomness.

ular ODE approach we could observe an upregulation of
Th17-related molecules, STAT3-P and RORγt, as well as
an activation of the production of IL-17 (Figure 5A). We
observed how the production of IL-17 by Th17 cells in
silico was affected by adding stochasticity to the FOXP3
(Treg-related) and RORγt nodes (Figure 5B). We next
sought to determine the effect of stochasticity upstream
in the Th17-induction pathway. By giving stochasticity
to the phosphorylation reaction of STAT3 (activator of
RORγ) we could observe a more impaired ability for IL-
17 to be steadily produced (Figure 5C). This behavior
has been observed in our experimental studies, where a
non-stable production of IL-17 has been detected when
running in vitro induction of Th17 with IL-6 and TGF-
β. We attribute the differences in the percentage of IL-
17-producing CD4+ T cells to the variability on STAT3
phosphorylation. To gain a better understanding of this
trend, we added stochasticity upstream on the receptor
of IL-6. IL-6 is a crucial pro-inflammatory cytokine
for Th17 induction. TGF-β is a common inductor for
both Th17 and Treg [2]. Our results using the SDE tool
show a completely broken balance when stochasticity
of IL-6 is added (Figures 5D and E). We observed
stages where the double-positive, RORγt+ FOXP3+ was
generated. Experimentally, the double positive has been

already described as a transition between these two
phenotypes [33]. Our modeling approaches with the SDE
tool predictively show how a double-positive CD4+ T
cell can be triggered by adding randomness to the IL-6
binding in the transmembrane IL-6 receptor.

VI. CONCLUSIONS

In this paper, we have made three major contributions.
(1) We present SDE and propose that it should be
used as a generic stochastic modeling technique for
computational biology. (2) We develop a web-based SDE
modeling tool that requires minimal effort beyond the
effort required for regular deterministic ODE modeling.
To our best knowledge, we are the first to build such
a user-friendly SDE modeling tool targeting for biolo-
gists and immunologists. (3) We demonstrate the SDE
modeling technique and our SDE modeling tool with a
case study on a CD4+ T Cell Differentiation model that
has 93 species and 46 reactions. The case study clearly
shows the effectiveness of SDE modeling technique and
the power of the SDE tool we have developed.

For future work, we plan to extend our study into the
following areas:
• Improvement of the SDE tool and user interface

such as adding supporting of multiple runs
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• Development of more SDE models based upon bi-
ological data through network inference progresses

• Parameter estimation for stochastic processes
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