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Abstract— The immune system is composed of hetero-
geneous cell populations and it includes several hundreds
of distinct cells types such as neutrohils, eosinophils, ba-
sophils, macrophages, dendritic cells, CD4+ and CD8+ T
cells, γδ T cells, mast cells, and B cells and each main cell
type can be further differentiated into subsets with unique
and overlapping functions. For example CD4+ T cells can
be differentiated into T helper (Th)1, Th2, Th17, and
regulatory T cell (Treg) subsets. To study molecular mech-
anisms of cell differentiation, Systems Biology Markup
Language (SBML) based Ordinary Differential Equation
(ODE) models can be used for representing such processes.
These intracellular signaling models often require many
equations to accurately represent intracellular pathways
and biochemical reactions. Another challenge in studying
the immune system and immune responses is the need for
integration of complex processes that occur at different
time and space scales (i. e., populations, whole organism,
tissue level, cellular and molecular) through multi-scale
modeling.

This study presents two novel neural network models
for modeling CD4+ T cell differentiation and immune cell
subset classification. The first model reduces the complex
ODE intracellular model by focusing on the input and
output cytokines and the second model establishes an
automated subset classification based on molecular patterns
expressed in immune cells. After training, the first model
achieves small prediction errors of cytokine concentrations
and the second model achieves 98% prediction rate for
subset classification. Neural network algorithm and models
have been widely used for many data mining tasks such as
classification and pattern recognition. However, to the best
of our knowledge this study is the first one applying the
neural network algorithm for immune cell differentiation
and subset classification. In addition, these novel neural
network models can be computationally efficiently inte-
grated into multi-scale models with limited computational
costs.

I. INTRODUCTION

A. Immune cell differentiation and modeling

The process of immune cell differentiation plays a
central role in orchestrating immune responses. This pro-
cess is based on the differentiation of nave immune cells

that will activate its transcriptional machinery through a
variety of signaling cascades to become phenotypically
and functionally different entities capable of responding
to viruses, bacteria, parasites, cancer cells, etc. Func-
tionally, immune cells have been classified in either
regulatory or effector subsets. For instance naive CD4+ T
cells differentiate into effector phenotypes such as Th1,
Th17 or Th2 when the cytokine milieu is rich in IFNγ or
IL-12 (for Th1), IL-6, IL-1β and TGF-β (for Th17) or
IL-4 (for Th2). The external cytokine tissue environment,
therefore, is a key and decisive factor for delineating the
cell differentiation outcomes, although selective factors
are also important in this process.

The cell differentiation process involves a series of
sequential and complex biochemical reactions within the
intracellular compartment of each cell. The SBML is
XML-based and human readable, and is widely used to
represent models of biological processes. SBML allows
the biochemical reactions to be represented by master
equations characterized to be first- order ODE. Of note,
ODE models are extensively used to model biological
processes such as cell differentiation, immune responses
towards specific pathogens or intracellular activation of
specific pathways. Often, these models require several
equations to adequately represent the process they intend
to model, being either at the tissue level or at the
intracellular level. In one of our previous studies, Carbo
et. al. [4] published the first comprehensive ODE model
of CD4+ T cell differentiation that encompassed the
Th1, Th2, Th17 and Treg phenotypes. The CD4+ T cell
differentiation model is composed of 60 ODEs and built
upon the current paradigms of molecular interactions
that occur in CD4+ T cells. The model is intended to
help researchers to elucidate the regulatory mechanisms
underlying CD4+ T cell differentiation, identify novel
putative CD4+ T cell subsets, and study the dynamics
of Th cell differentiation.



B. Multi-scale modeling and model reduction

In one of our previous studies, Mei et. al. [26] pre-
sented Enteric Immunity Simulator (ENISI) Visual, an
agent-based simulator for modeling mucosal immune re-
sponses to enteric pathogens. ENISI Visual can simulate
cells, cytokines, cell movement and cell-cell interactions.
ENISI Visual is rule-based and either inter-cellular or
tissue-level. To be able to model finer-grained intracel-
lular behaviors, a multi-scale modeling approach, which
embeds intra-cellular models into the inter-cellular tissue
level models is needed. While the fine-grained ODE
models of intracellular pathways controlling immune cell
differentiation are adequate for studying mechanisms of
cell differentiation, it can also be highly complex and
expensive from a computational stand-point, especially
when embedded within large-scale agent-based simula-
tions. ENISI Visual models a large number of cells and
microbes in the gastroeintestinal mucosa. If each agent is
represented by 60 ODEs, as an example, the simulation
will hardly scale up. To be able to develop efficient
agent-based multi-scale models, model reduction is a
necessary step in order to obtain a workable model
able to compute appropriately. In addition, multi-scale
models usually do not require all the internal details of
intra-cellular models to have predictive value and this
provides a great avenue to apply novel automated model
reduction strategies to reduce molecular models before
integrating them into large-scale agent-based tissue-level
model, thus fulfilling the multi-scalability requirements.

C. Neural network algorithms and its applications

Artificial neural networks (ANN) algorithms, inspired
by the biological neural systems, are powerful modeling
and data mining tools based upon the theory of connec-
tionism. Neurons are connected to each other through
synapses. A neuron receives inputs from multiple neu-
rons and outputs one value based upon the activation
function. The network structures and the parameters of
the activation function are important factors when devel-
oping neural network models. Feedforward neural net-
works are frequently used structures in modeling. There
are effective learning algorithms for the parameters once
the structures are set in the feedforward ANNs. Neural
network algorithms are widely used for data mining tasks
such as classification and pattern recognition. Neural
network algorithms are especially effective in model-
ing non-linear relationships which makes them ideal
candidates for differentiation processes and automated
classification of phenotypes. Importantly, this process is
scalable.

To the best of our knowledge, this study is the first
applying neural network algorithms into studying the
immune cell differentiation, cell heterogeneity and sub-
set classification. More specifically, the neural network
algorithms are used in the following two models:

• Model reduction for T cell differentiation. We use
neural network algorithms to reduce the intra-
cellular CD4+ T cell differentiation ODE model
into a neural network model with 4 inputs, 5
outputs, and one middle layer of 6 nodes. The 4
input nodes represent the 4 external cytokines that
regulate the cell differentiation; the 5 output nodes
represent the 5 cytokines that are externalized and
secreted by the T cell subsets.

• T cell subset classification. We developed a neural
network model for subset classification with 4 input
nodes representing the 4 external cytokines as in the
first model and 4 output nodes representing four
possible subset classification outcomes. This model
also has 6 intermediate nodes.

After training, the first model achieves high accuracy
in predicting the concentrations of output cytokines.
For example, the output is in the range of [0, 1] and
the largest average prediction error is 0.0253 for IL17.
The second model achieves 98% classification accuracy
based upon the rules set by expert immunologists.

The remaining of this paper is organized as follows.
We first review the literature of related previous work.
The problem of modeling T cell differentiation and
subset classification is presented next. Neural network
algorithm and models for solving important immuno-
logical problems are presented thereafter. At the end,
the paper provides some concluding remarks, including
discussions of future proposed work.

II. RELATED WORK

The immune system protects the human body from
pathogens by recognizing, containing, and destroying
non-self or foreign substance [2]. At the highest level,
immune systems can be divided into innate and adaptive.
The innate immune systems [1], involving cells such
as macrophages, epithelial cells, neutrophils, respond
quickly but non-specifically to stimuli. On the contrary,
adaptive immune systems [16] involving T cells and B
cells respond more specifically to antigens. Immune cells
are activated and differentiated into ever-growing num-
bers of cell subsets [10] [27] [28] regulated by different
cytokines in their micro-environment. Using CD4+ T
cells as an example, when both transforming growth
factor-b (TGFβ) and interleukin-6 (IL-6) are present
in the environment, native CD4+ T cells differentiate
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Fig. 1. The networked ODE model for T Cell differentiations [4]. The model has four regions of pathways that regulates the cell differentiation
into Th1, Th2, Treg, and Th17.

into Th17 [25], [20]. When TGFβ alone presents in
the environment, CD4+ T Cells differentiate into Treg
[14]. When both IFNγ and IL12 are present, T cell
differentiate into Th1 [19].

Systems biology [17] has become an important
paradigm of life science research, using mathematical
and computational models to synthesize and mine exit-
ing knowledge, and discover new knowledge from big
data. Biological systems and processes can be modeled
using networks [18] where nodes and edges represent
biological agents such as cells and their interactions.
Furthermore, mathematical or computational dynamics
can be applied to the networked models so that in
silico simulations [8] can be performed. SBML [15] is a
XML-based file format used to represent computational
models of biological processes. There are many types of
models [24] used for modeling biological processes such
as Bayesian networks, ordinary differential equations
(ODE), agent-based models. For metabolic and signal-
ing networks, the reactions are biochemical reactions.
As biochemical reactions can be represented first-order
ODEs [7], metabolic and signaling networks often are
modeled by ODEs [9].

In one of our previous studies, Carbo et. al. [4]
published the first ODE model of CD4+ T Cell differenti-
ation, which comprises of 60 ODEs. The model as shown
in Figure 1 represents the intracellular pathways that are

critical for T cell differentiation. This model has been
well calibrated using experimental data. In another our
previous study, Mei et. al. [26] presented ENISI Visual,
an agent-based simulator for modeling enteric immunity.
One example modeling scenario is shown in Figure 2.

Fig. 2. ENISI Visual [26], an agent-based model for enteric immunity.
The immune cells are represented by icons with different colors
representing different subset state. The background color represent the
concentrations of cytokines.

Neural network algorithms have been widely used in
data mining tasks [5][23]. Neural network algorithms
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have been also used in medical applications [6]. Snow
et al. [29] developed neural networks for prostate cancer
diagnosis and prognosis. Lek et al. [22] introduced using
neural networks in ecological modeling. Brusic et al. [3]
used neural networks for predicting HC binding pep-
tides. Learning is an important research topic in neural
networks. White [30] presented neural network learning
algorithms from the statistical perspective. Hagan et al.
[12] presented an effective learning algorithm called
back-propagation for training feedforward networks. In
addition to modeling and predictions, Neural network
has also been used for solving ordinary and partial
differential equations [21].

III. THE PROBLEM: MODELING IMMUNE CELL
DIFFERENTIATION AND SUBSET CLASSIFICATION

To define the problem, we make the following as-
sumptions. There are m input cytokines that regulate
immune cell differentiation: Ci1, Ci2, ... , Cim. The
n output cytokines secreted by immune cells are: Co1,
Co2, ... , Con. The immune cell’s subset type is S
with l possible subsets: S1, S2, ..., Sl. The cytokine
concentrations are positive continuous values. The cell
subsets are categorized.

The problem of modeling immune cell differentiation
and subset classification is to develop two models for
the following two functional relationships:

{Co1, Co2, ..., Con} = Fc(Ci1, Ci2, ..., Cim) (1)

{S|S1, S2, ..., Sl} = Fs(Ci1, Ci2, ..., Cim) (2)

The first model is to predict the output cytokine
concentrations giving concentrations of input cytokines.
The second model is to predict the cell subset type also
giving concentrations of input cytokines.

A. T cell differentiation and subsets

This study will focus on the T cell differentia-
tion. However, the techniques and algorithms developed
herein can be applied to differentiations of other types
of immune cells, such as macrophages, dendritic cells,
B cells, etc. The input cytokines are internalized by the
naive T cells and regulate the T cell differentiation. The
output cytokines are cytokines externalized and secreted
by the T cells. For the T Cell differentiation, the four
input cytokines are IFNγ, IL12, IL6, and TGFβ. The
five output cytokines are IL17, RORγt, IFNγ, Tbet, and
FOXP3. We focus on three T cell subsets, Th1, Th17,
and Treg.

B. Data for training and testing models

The data for modeling the relationship from the input
and output cytokines can be derived from the ODE
T Cell differentiation model [4] since the model was
calibrated using data from biological experiments. We
change the concentrations of the input cytokines and
then we calculate the steady state of the ODE model
and extract the values of the output cytokines. All the
data is normalized to the range of [0, 1]. We choose two
ways to set values for input cytokines. The first method
is equal-distance sampling. For each input cytokine, we
choose five values 0, 0.25, 0.5, 0.75, and 1. The second
method is randomizing. A random value of each cytokine
is independently generated following an even distribution
between [0, 1].

Based upon the output values of cytokines, we asked
immunologists to give us the rules to classify the subsets.
The rules include the following conditional rules applied
in order. Rule1: if (IL17 > 0.6) and (RORγt > 0.7),
the subset is Th17; Rule 2: if (FOXP3 > 0.9), the
subset is Treg; Rule 3: if (Tbet > 0.6) and (IFNγo >
0.9), the subset is Th1. If none of the above rules applies,
the subset is unclassified.

We use COPASI [13] to do the ODE modeling and
it provides parameter scans both randomly and pre-
definedly. We write a script to automatically extract
the wanted values from the COPASI result file. Table
I shows some example data that can be used for training
and testing the model. Some of the data will be used
in training and some of the data will be used for
testing/predicting purpose. Furthermore, these files are
tab-separated files and data in table format can be readily
read into R for further data processing.

IV. NEURAL NETWORK MODELS

A. Linear regression model

Before we develop neural network models, we try
linear regression model first. For the linear regression
model, the function in equation (1) is linear. R has a
linear regression module that can be readily used for this
study. The result of the linear regression is essentially
a linear transformation from the input cytokines to the
output cytokines.


FOXP3
IFNγi
IL17
RORγt
Tbet

 =MTran ×


1

IFNγo
IL12
IL6
TGFβ

 (3)
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TABLE I
EXAMPLE DATA USED FOR TRAINING AND TESTING OF THE MODELS. THE LEFT FOUR COLUMNS ARE VALUES OF INPUT CYTOKINES; THE

MIDDLE FIVE CYTOKINES ARE VALUES OF OUTPUT CYTOKINES; AND THE RIGHT COLUMN IS THE SUBSET CATEGORY. THE FIRST 6 ROWS

OF DATA ARE GENERATED FROM EQUAL-DISTANCE SAMPLING METHOD AND THE LOWER 6 DATA ROWS ARE GENERATED FROM

RANDOMIZED SAMPLING METHOD.

IFNγi IL12 IL6 TGFβ IL17 RORγt IFNγo Tbet FOXP3 Subset

0 0.25 0 0.5 0.09 0.01 0.90 0.50 0.99 Treg
0 0.25 0.25 0.25 0.89 0.94 0.31 0.33 0.20 Th17
0 0.5 0 0.75 0.09 0.01 0.89 0.47 0.99 Treg
0 0.75 1 1 0.92 0.99 0.27 0.26 0.16 Th17

0.25 0 0.75 0.75 0.91 0.98 0.10 0.27 0.17 Th17
0.25 0.5 0.25 0.25 0.89 0.93 0.31 0.33 0.20 Th17

0.44 0.65 0.80 0.60 0.91 0.99 0.28 0.28 0.17 Th17
0.92 0.69 0.97 0.12 0.92 0.99 0.30 0.35 0.17 Th17
0.04 0.48 0.67 0.46 0.91 0.98 0.28 0.29 0.17 Th17
0.76 0.44 0.63 0.57 0.91 0.98 0.28 0.29 0.18 Th17
0.29 0.40 0.57 0.51 0.91 0.98 0.29 0.29 0.18 Th17
0.34 0.14 0.35 0.42 0.90 0.96 0.30 0.31 0.19 Th17

Where the transformation matrix MTran is
0.439 0.0145 −0.0118 −0.541 0.0699
0.443 0.0313 0.164 −0.361 0.0363
0.479 0.0169 0.0422 0.539 0.00752
0.466 0.00758 0.0337 0.666 0.00722
0.425 0.0471 0.0456 −0.145 −0.135


The fitting error, the average absolute difference be-

tween the model predictions and real outputs from the
data, of the linear model is shown in table II.

TABLE II
FITTING ERROR OF THE LINEAR REGRESSION MODEL

IL17 RORγt IFNγ Tbet FOXP3

0.216 0.243 0.163 0.078 0.233

Considering the data are normalized within [0, 1],
the fitting errors are obviously large. This indicate that
the T cell differentiation is highly non-linear and linear
regression is not a good tool to model this process.

B. Neural network model for cytokine concentrations

Neural network models can be used to model non-
linear relationships. We use a package in R named neu-
ralNet [11] to develop a model for T cell differentiation
as shown in Figure 3.

This model has 4 nodes for inputs, 5 nodes for
outputs, and one middle layer of 6 intermediate nodes.
It fit the training data very well with a small number
0.4797 as the sum of the squared errors. It took 37984

steps to converge. The learning algorithm used is back
propagation.

Since the fitting error is very small, we use this model
to further predict the output cytokines with randomized
input cytokine concentrations. The average prediction
errors in terms of average absolute difference between
the predictions and the outputs of the ODE model are
shown in table III. The maximum error is 0.0253 that is
low.

TABLE III
PREDICTION ERROR OF THE NEURAL NETWORK MODEL

IL17 RORγt IFNγ Tbet FOXP3

0.0253 0.0119 0.0104 0.0101 0.0404

C. Neural network model for subset classification

With the success of neural network model for predict-
ing concentrations of output cytokines, we further de-
velop another neural network model for classifying cell
subset. In the context of Helicobacter pylori pathogen-
host immune responses simulation, Th1, Th17, and Treg
are the three subsets of interests.

We asked the immunologists to classify the cells
into subsets according to the concentrations of output
cytokines. We use part of the data to train the model
and part of the data to test the model. This model has
four outputs corresponding to the three subsets, Th1,
Th17, and Treg, and one unclassified. For the training
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Fig. 3. A neural network model for T Cell differentiation. The inputs
are cytokines that regulate the T cell differentiation and the outputs
corresponding to the cytokines that secreted by the immune cells. There
is a middle layer of 6 nodes in the feedforward network. The training
algorithm used is back propagate.

and testing data, the four outputs will have one 1 and
three 0s. The cell is classified as the output subset if it
value is 1.

Presented in Figure 4, this model takes 859 steps to
converge and the sum of squared errors is a small number
0.518. Remember the training data has outputs of 1s
and 0s; but the model outputs are numbers between 0
and 1. We use this model to predict another 100 data
of randomized input cytokines. The predicted subset
is the subset corresponding the maximum output. The
prediction accuracy is 98% with 2 wrong predictions and
98 correct predictions.

V. CONCLUSIONS

In this study, we presented two neural network models
for CD4+ T Cell differentiation and subset classification.
Immune cell differentiation and subset classification are
important immunological processes that are not fully
characterized. Based upon our previous studies on the
ODE model of CD4+ T cell differentiation and agent-
based modeling for enteric immunity, developing multi-
scale models requires significant reduction of the intra-
cellular ODE model before integrating them into the
inter-cellular agent-based models.

Fig. 4. A neural network model for CD4+ T Cell subset classification.
The inputs are cytokines that regulate the T cell differentiation and the
outputs corresponding to four categories: three classified T cell subsets,
Th1, Th17, and Treg, and one unclassified. There is a middle layer of
6 nodes in the feedforward network. The training algorithm used is
back propagate.

Immune cell differentiation is a non-linear process
and linear regression models are not capable of fitting
well the data. To address this problem, a feed-forward
neural network model has been developed, focusing
on modeling the relationship between the input ex-
ternal cytokines regulating the cell differentiation and
the output cytokines secreted and externalized by the
immune cell subsets. After training using back propagate
algorithm, this neural network model accurately predicts
the concentrations of the output cytokines. Furthermore
we developed another neural network model for automat-
ically classifying T cell subset. This model achieves 98%
classification accuracy. These two models significantly
reduce the ODE model complexity by focusing on the
needs of multi-scale models and provide great modeling
and prediction accuracy. These approaches are scalable
and can be integrated into future multi-scale modeling
efforts.

To our best knowledge, this is the first study using
neural networks to model immune cell differentiation
and subset classification. For future work, we will extend
this study in the following three major areas:

• Validating the model directly using experimental
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data instead of currently relying on the calibrated
ODE model and thus being validated indirectly by
experimental data

• Developing more neural network models for the
differentiation and subset classification of other
types of immune cells such as macrophage cells
and B cells

• Integrating the neural network models into the
agent-based models we developed using ENISI
Visual for multi-scale models to study more inte-
grated, broader and deeper scopes of immunological
processes
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