NIMML
  • Menu
  • Go
  • About
  • Team
  • Research
  • Modeling
  • Clinical
  • Projects
  • News
  • Publications
  • Careers
  • Home people

John J. Tyson

Biography

John J. Tyson is a systems biologist and mathematical biologist who serves as NIMML Institute member, and is the former president of the Society for Mathematical Biology. He is known for his research on biochemical switches in the cell cycle, dynamics of biological networks and on excitable media. Since receiving his PhD in chemical physics at the University of Chicago in 1973, John Tyson has been studying temporal and spatial organization in chemical, biochemical and biological systems. He has focused on the macro-molecular reaction networks that process information in living cells and initiate appropriate responses in terms of cell growth, division and death. He represents the dynamics of these reaction networks in terms of mathematical equations, using computer simulations to work out the precise behavior to be expected of the network. By comparing simulations with experimental data, the computer models can be tested, refined and developed, eventually, into tools for accurate predictions of the physiological responses of healthy and diseased cells. He has been involved in some seminal studies related to computational immunology.

Contact

  • Phone: 540-231-4662
  • Email: john@nimml.org
  • Contact
  • Education
  • News & Events
  • Publications

© 2000 - 2025 NIMML Institute


  • Clinical
    • Clinical Development (Phase I-IV)
  • Pig Models
    • Neonatal pig model
    • Inflammatory bowel disease
    • Novel Pig Model of H. pylori
  • Media & Press Kit
    • Mission, Vision, Values
    • History
    • Quick Facts
    • Strategic Initiatives
  • ENISI Helicobacter Pylori Model
    • Sensitivity Analysis
    • Cell Movement Modeling
  • CDiff Computational Model Archive
    • Mucosal Immune Responses
    • PPAR γ and miRNA
  • EAEC Computational Model
    • Mucosal Immune Responses
    • T Cell Response
    • Epithelial Cell Responses
  • Macrophage Computational Model Archive
    • April 2012
    • Jan 2012
    • Oct 2011
  • COPASI Helicobacter Pylori Computational Model Archive
    • May 2012
    • April 2012
    • Jan 2012
    • Sep 2011
  • CD4+ T Cell Model Archive
    • Feb 2014
    • October 2012
    • August 2012
    • April 2012
    • Jan 2012
    • Sep 2011
    • June 2011
    • March 2011
  • Immunology
    • Helicobacter pylori
    • CD4+ T cell differentiation
    • Human Studies
    • Enteroaggregative E. coli
  • Animal Models
    • Type 2 Diabetes
    • Clostridium dificile infection
    • Influenza
    • Inflammatory bowel disease
    • Helicobacter pylori
    • Pig Models
    • Murine Models
  • Infectious Diseases
    • Helicobacter pylori
    • Clostridium difficile
    • Enteroaggregative E. coli
  • Immune Mediated Diseases
    • Novel IBD Interventions
  • Nutritional Immunology
    • Novel IBD Interventions
    • Phytochemicals
    • Dietary Lipids
    • Prebiotics and Probiotics
  • Drug Development
    • Host-targeted Therapeutics
    • Translational Medicine
  • Data
    • Modeling NLRX1 response to H.pylori
    • Modeling Clostridium difficile Immune Response
    • EAEC Zinc Deficiency
    • IL-21 in the Gastric Mucosa
    • Novel Pig Model
    • CD4+ T Cells
    • Modeling H. pylori Immune Response
    • Clostridium difficile
    • Enteroaggregative Escherichia coli
    • ENISI V0.9 in silico experiments
  • Computational Models
    • Inflammatory bowel disease
    • CD4+ T Cell Model
    • Host Responses to H. pylori
    • Host Responses to EAEC
    • Host Responses to C. difficile
    • Macrophages
  • Tools
    • CMS
    • CellDesigner
    • ENISI Suite
    • COPASI Suite
    • Galaxy
    • LabKey
    • RedCap
    • Intranet
    • CellPublisher
  • Projects
    • Alternate Preclinical Models Of Enteric Infection
    • Modeling Infectious Disease Kinetics (MIDK-cWMD)
  • Immunoinformatics
    • Computational Modeling
    • High Performance Computing
    • Transcriptomics
  • NIMML POLICIES
    • FCOI