NIMML
  • Menu
  • Go
  • About
  • Team
  • Research
  • Modeling
  • Clinical
  • Projects
  • News
  • Publications
  • Careers
  • Home Research

Explore our research In...


  • Drug Development

    The NIMML has established an extensible innovation pipeline for developing safer and more effective therapeutics for immune-mediated, infectious and chronic inflammatory diseases.


  • Nutritional Immunology

    Pioneering NIMML program aimed at understanding how diet and nutritional factors influence the immune responses, thereby regulating health and disease outcomes.


  • Immune Mediated Diseases

    The NIMML aims to comprehensively and systematically characterize mechanisms of immune dysregulation that contribute to the pathogenesis of inflammatory bowel disease (IBD), Type-1 Diabetes, psoriasis, asthma, allergies, and rheumatoid arthritis.


  • Infectious Diseases

    The NIMML combines experimental and computational methods to study the mechanisms of action underlying immune responses to H. pylori, E. coli, C. difficile, and influenza virus.


  • Chronic Diseases

    The NIMML is identifying and validating novel therapeutic targets for the treatment of type-2 diabetes and developing lead compounds that can modulate these novel targets.


  • Computational Immunology

    Computational immunology, or immunoinformatics, has emerged as a powerful tool to quantitatively understand the dynamics of complex immunological systems.

  • Contact
  • Education
  • News & Events
  • Publications

© 2000 - 2025 NIMML Institute


  • Clinical
    • Clinical Development (Phase I-IV)
  • Pig Models
    • Neonatal pig model
    • Inflammatory bowel disease
    • Novel Pig Model of H. pylori
  • Media & Press Kit
    • Mission, Vision, Values
    • History
    • Quick Facts
    • Strategic Initiatives
  • ENISI Helicobacter Pylori Model
    • Sensitivity Analysis
    • Cell Movement Modeling
  • CDiff Computational Model Archive
    • Mucosal Immune Responses
    • PPAR γ and miRNA
  • EAEC Computational Model
    • Mucosal Immune Responses
    • T Cell Response
    • Epithelial Cell Responses
  • Macrophage Computational Model Archive
    • April 2012
    • Jan 2012
    • Oct 2011
  • COPASI Helicobacter Pylori Computational Model Archive
    • May 2012
    • April 2012
    • Jan 2012
    • Sep 2011
  • CD4+ T Cell Model Archive
    • Feb 2014
    • October 2012
    • August 2012
    • April 2012
    • Jan 2012
    • Sep 2011
    • June 2011
    • March 2011
  • Immunology
    • Helicobacter pylori
    • CD4+ T cell differentiation
    • Human Studies
    • Enteroaggregative E. coli
  • Animal Models
    • Type 2 Diabetes
    • Clostridium dificile infection
    • Influenza
    • Inflammatory bowel disease
    • Helicobacter pylori
    • Pig Models
    • Murine Models
  • Infectious Diseases
    • Helicobacter pylori
    • Clostridium difficile
    • Enteroaggregative E. coli
  • Immune Mediated Diseases
    • Novel IBD Interventions
  • Nutritional Immunology
    • Novel IBD Interventions
    • Phytochemicals
    • Dietary Lipids
    • Prebiotics and Probiotics
  • Drug Development
    • Host-targeted Therapeutics
    • Translational Medicine
  • Data
    • Modeling NLRX1 response to H.pylori
    • Modeling Clostridium difficile Immune Response
    • EAEC Zinc Deficiency
    • IL-21 in the Gastric Mucosa
    • Novel Pig Model
    • CD4+ T Cells
    • Modeling H. pylori Immune Response
    • Clostridium difficile
    • Enteroaggregative Escherichia coli
    • ENISI V0.9 in silico experiments
  • Computational Models
    • Inflammatory bowel disease
    • CD4+ T Cell Model
    • Host Responses to H. pylori
    • Host Responses to EAEC
    • Host Responses to C. difficile
    • Macrophages
  • Tools
    • CMS
    • CellDesigner
    • ENISI Suite
    • COPASI Suite
    • Galaxy
    • LabKey
    • RedCap
    • Intranet
    • CellPublisher
  • Projects
    • Alternate Preclinical Models Of Enteric Infection
    • Modeling Infectious Disease Kinetics (MIDK-cWMD)
  • Immunoinformatics
    • Computational Modeling
    • High Performance Computing
    • Transcriptomics
  • NIMML POLICIES
    • FCOI